DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

UNIT-2

SYLLABUS:

Relational Model: The Relational Model Concepts, Relational Model Constraints and
Relational Database Schemas.

SQL.: Data Definition, Constraints, and Basic Queries and Updates, SQL Advanced Queries,
Assertions, Triggers, and Views

Formal Relational Languages: Relational Algebra: Unary Relational Operations: Select and
Project, Relational Algebra Operations from Set Theory, Binary Relational Operations: Join
and Division, Examples of Queries in Relational Algebra.

1. Relational Model:

Introduction

The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a
classic paper (Codd 1970), and it attracted immediate attention due to its simplicity and
mathematical foundation. The model uses the concept of a mathematical relation which looks
somewhat like a table of values as its basic building block, and has its theoretical basis in set
theory and first-order predicate logic.

The first commercial implementations of the relational model became available in the early
1980s, such as the SQL/DS system on the MVS operating system by IBM and the Oracle
DBMS. Since then, the model has been implemented in a large number of commercial
systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic
Server (from IBM), Oracle and Rdb (from Oracle), Sybase DBMS (from Sybase) and
SQLServer and Access (from Microsoft). In addition, several open source systems, such as
MySQL and PostgreSQL, are available.

1.1 The Relational Model Concepts:

The relational model represents the database as a collection of relations. Informally, each
relation resembles a table of values or, to some extent, a flat file of records. It is called a flat
file because each record has a simple linear or flat structure.

When a relation is thought of as a table of values, each row in the table represents a collection
of related data values. A row represents a fact that typically corresponds to a real-world entity
or relationship. The table name and column names are used to help to interpret the meaning
of the values in each row.

Example: In STUDENT relation because each row represents facts about a particular student
entity. The column names Name, Student_number, Class, and Major specify how to interpret
the data values in each row, based on the column each value is in. All values in a column are
of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header is called
an attribute, and the table is called a relation. The data type describing the types of values that
can appear in each column is represented by a domain of possible values.

1.1.1 Domains, Attributes, Tuples, and Relations

Domain:

V.RASHMI (Assistant Professor) PVPSIT IT 1

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

A domain D is a set of atomic values. By atomic we mean that each value in the domain is
invisible as far as the formal relational model is concerned. A common method of specifying
a domain is to specify a data type from which the data values forming the domain are drawn.
It is also useful to specify the name for the domain, to help in interpreting its values.

Some examples of domains follow:

e Usa phone_numbers: The set of ten-difgit phone numbers valid in United States.
e Social_security_numbers: The set of valid nine-digit social security numbers.
e Names: The set of character strings that represents the names of persons.

e Employee_ages: Possible ages of employees in a company; each must be an
integer value between 15 and 80.

The preceding are called logical definitions of domains. A data type or format is also
specified for each domain. For example, the data type for the domain Usa_phone_numbers
can be declared as a character string of the form (ddd)ddddddd, where each d is a numeric
(decimal) digit and the first three digits form a valid telephone area code. The data type for
Employee_ages is an integer number between 15 and 80.

Attribute:

An attribute Ai is the name of a role played by some domain D in the relation schema R. D
is called the domain of Ai and is denoted by dom(Ai).

Tuple:

Mapping from attributes to values drawn from the respective domains of those attributes.
Tuples are intended to describe some entity (or relationship between entities) in the miniworld
Example: a tuple for a PERSON entity might be

{ Name -->"smith”, Gender--> Male, Age --> 25 }
Relation:

A named set of tuples all of the same form i.e., having the same set of attributes.

Relation Name — A'P"buEes —

STUDENT — o— P \ ~a —
! MName San Home_phone Address Office_phone | Age| Gpa
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane| NULL 19 | 3.21
;,".L[-_p:hurlg.-r.h_a K'_rrl] .EE 1-62-1245 {E '| ?!3?5_-4409 125 I‘(Ifll:l}r_Rl_'Jad ?\!ULL “'I B | 289
Tuples -:hl Dick Davidson | 422-11-2320 | MULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
“:['Feohm Panchal | 489-22-1100 | (817)376-0821 | 265 Lark Lane (817)749-6492 | 28 |3.93
! Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane MULL 19 | 3.25

Relation schema:

A relation schema R, denoted by R(As, A, ...,As), is made up of a relation name R and a list
of attributes As, A, ...,An. Each attribute Ai is the name of a role played by some domain D in
the relation schema R. D is called the domain of Ai and is denoted by dom(Ai). A relation
schema is used to describe a relation; R is called the name of this relation.

V.RASHMI (Assistant Professor) PVPSIT IT 2

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The degree (or arity) of a relation is the number of attributes n of its relation schema. A
relation of degree seven, which stores information about university students,would contain
seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

Domains for some of the attributes of the STUDENT relation:
dom(Name) = Names;

dom(Ssn) = Social_security_numbers;

dom(HomePhone) =USA_phone_numbers,
dom(Office_phone) = USA_phone_numbers,

Relation (or relation state):

A relation (or relation state) r of the relation schema by R(As, A, ...,A), also denoted by r(R),
is a set of n-tuples r = {t1, t2, ..., tm}. Each n-tuple t is an ordered list of n values t =<v1, v2,
..., vn where each value vi <i <n is an element of dom(Ai) or is a special NULL value. The

i value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or t. Ai.

The terms relation intension for the schema R and relation extension for a relation state r(R)
are also commonly used.

Informal Terms | Formal Terms

Table Relation
Column Header Attribute
All possible Domain
Column Values
Row Tuple
Table Defmition Schema of a
Relation
Populated Table State of the
Relation

1.1.2 Characteristics of Relations
1) Ordering of Tuples in a Relation

A relation is defined as a set of tuples. Mathematically, elements of a set have no order
among them; hence, tuples in a relation do not have any particular order. Tuple ordering

V.RASHMI (Assistant Professor) PVPSIT IT 3

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

is not part of a relation definition because a relation attempts to represent facts at a
logical or abstract level. Many tuple orders can be specified on the same relation.

2) Ordering of Values within a Tuple and an Alternative Definition of a Relation

The order of attributes and their values is not that important as long as the
correspondence between attributes and values is maintained. An alternative definition
of a relation can be given, making the ordering of values in a tuple unnecessary. In
this definition A relation schema R(As, A, ...,An), set of attributes and a relation state
r(R) is a finite set of mappings r = {t1, t2, ..., tm}, where each tuple ti is a mapping
from R to D.

According to this definition of tuple as a mapping, a tuple can be considered as a set
of (<attribute>, <value>) pairs, where each pair gives the value of the mapping from
an attribute Ai to a value vi from dom(Ai) .The ordering of attributes is not important,
because the attribute name appears with its value.

Relatlon Name Attributes
sTU DENT / N

Name Home_phone Address Office_phone| Age | Gpa
Benjamin Bayer | 305-61-2435 | 373-1616 2918 Bluebonnet Lane | NULL 19 | 3.21
/ Chung-cha Kim | 381-62-1245 | 375-4409 125 Kirby Road NULL 18 | 2.89
Tuples —/: Dick Davidson 422-11-2320 | NULL 3452 Elgin Road 749-1253 25 | 3.63
\\ Rohan Panchal |489-22-1100 | 376-9821 265 Lark Lane 749-6492 28 | 3.93
Barbara Benson | 533-69-1238 | 839-8461 7384 Fontana Lane NULL 19 | 3.25
Figure 5.1
The attributes and tuples of a relation STUDENT.
Figure 5.2
The relation STUDENT from Figure 5.1 with a different order of tuples.
STUDENT
Name Ssn Home_phone Address Office_phone | Age | Gpa
Dick Davidson 422-11-2320 | NULL 3452 Elgin Road 749-1253 25 | 3.63
Barbara Benson | 533-69-1238 | 839-8461 7384 Fontana Lane NULL 19 | 3.25
Rohan Panchal | 489-22-1100 | 376-9821 265 Lark Lane 749-6492 28 | 3.93
Chung-cha Kim | 381-62-1245 | 375-4409 125 Kirby Road NULL 18 | 2.89
Benjamin Bayer | 305-61-2435 | 373-1616 2918 Bluebonnet Lane | NULL 19 |3.21

3) Values and NULLs in the Tuples

Each value in a tuple is atomic. NULL values are used to represent the values of
attributes that may be unknown or may not apply to a tuple. For example some
STUDENT tuples have NULL for their office phones because they do not have an
office .Another student has a NULL for home phone In general, we can have several
meanings for NULL values, such as value unknown, value exists but is not available,
or attribute does not apply to this tuple (also known as value undefined).

4) Interpretation (Meaning) of a Relation

The relation schema can be interpreted as a declaration or a type of assertion. For
example, the schema of the STUDENT relation of asserts that, in general, a student
entity has a Name, Ssn, Home_phone, Address, Office_phone, Age, and Gpa. Each
tuple in the relation can then be interpreted as a particular instance of the assertion.For
example, the first tuple asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

V.RASHMI (Assistant Professor) PVPSIT IT 4

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate.

1.1.3 Relational Model Notation
. Relation schema R of degree n is denoted by by R(A1, Az, ...,An)

: Uppercase letters Q, R, S denote relation names
" Lowercase letters g, r, s denote relation states

Letters t, u, v denote tuples

In ?enera], the name of a relation schema such as STUDENT also indicates the current set
of tuples in that relation

An attribute A can be qualified with the relation name R to which it belongs by using the
dot notation R.A for example, STUDENT.Name or STUDENT.Age

An n-tuple t in a relation r(R) is denoted by t = <vi, v, ..., Vo>, where vi is the
value corresponding to attribute Ai. The following notation refers to component
values of tuples: Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t
for attribute A..

Both t[As, Aw, ..., A;] and t.(Ay, Aw, ..., Az), where Ay, Aw, ..., Az is a list of
attributes from R, refer to the subtuple of values <vu, vw, .., vz> from t
corresponding to the attributes specified In the list.

1.2 Relational Model Constraints and Relational Database Schemas:
Constraints are restrictions on the actual values in a database state. These constraints are
derived from the rules in the miniworld that the database represents. Constraints on databases
can generally be divided into three main categories:

1) Inherent model-based constraints or implicit constraints

e Constraints that are inherent in the data model.

e The characteristics of relations are the inherent constraints of the relational model
and belong to the first category. For example, the constraint that a relation cannot
have duplicate tuples is an inherent constraint.

2) Schema-based constraints or explicit constraints

e Constraints that can be directly expressed in schemas of the data model, typically
by specifying them in the DDL.

e The schema-based constraints include domain constraints, key constraints,
constraints on NULLS, entity integrity constraints, and referential integrity
constraints.

3) Application-based or semantic constraints or business rules

e Constraints that cannot be directly expressed in the schemas of the data model,
and hence must be expressed and enforced by the application programs.

e Examples of such constraints are the salary of an employee should not exceed the
salary of the employee, supervisor and the maximum number of hours an
employee can work on all projects per week is 56.

1.2.1 Domain Constraints

Domain Constraints specify that within each tuple, the value of each attribute A must be an
atomic value from the domain dom(A). The data types associated with domains typically include
standard numeric data types for integers (such as short integer, integer, and long integer) and real
numbers (float and doubleprecision float). Characters, Booleans, fixed-length

V.RASHMI (Assistant Professor) PVPSIT IT 5

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

strings, and variable-length strings are also available, as are date, time, timestamp, and
money, or other special data types.

1.2.2 Key Constraints and Constraints on NULL Values

A Kkey is a set of one or more attributes that can uniquely identify each row in a table. A key
not only identifies the rows of a table but also relates two or more tables.
Different Types of Keys:

1)
2)
3)
4)
5)
6)
7)
8)
9)

1)

Super Key

Candidate Key

Primary Key

Foreign Key

Secondary Key/Alternate Key
Unique Key

Composite Key

Surrogate Key

Partial Key

Super Key: Super Key is an attribute (or a set of attributes) that uniquely identify a
tuple i.e. an entity in entity set.

It is a superset of Candidate Key, since Candidate Keys are selected from super key.
Example:

<Student>

Student_ID Student_Enroll Student_Name Student_Email

S02 4545 Dave ddd@gmail.com
S34 4541 Jack Ji@gmail com
S22 4555 Mark mmm@gmail.com

V.RASHMI (Assistant Professor) PVPSIT IT 6

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Super Keys are:

{Student_ID}

[Student_Enroll}

{Student_Email}

{Student_ID, Student_Enroll}

[Studet_ID, Student_Name}

[Student_ID, Student_Email}
[Student_Name, Student_Enroll}
{Student_ID, Student_Enroll, Student_Name]}
[Student_ID, Student_ Enroll, Student_ Email}
[Student_ID, Student_Enroll, Student_Name, Student_Email}

Candidate Keys are:
{Student_IDj
{Student Enroll}
{Student_Email}

2) Candidate Key: Each table has only a single primary key. Each relation may have
one or more candidate key. One of these candidate key is called Primary Key. Each
candidate key qualifies for Primary Key. Therefore candidates for Primary Key is
called Candidate Key.

Candidate key can be a single column or combination of more than one column. A
minimal super key is called a candidate key.

Example:
Student_ID Student_Enroll Student_Name Student_Email
S02 4545 Dave ddd@gmail. com
S34 4541 Jack j@gmail.com
S22 4555 Mark mmm@gmail.com

Above, Student_ID, Student_Enroll and Student_Email are the candidate keys. They
are considered candidate keys since they can uniquely identify the student record.

3) Primary Key: It is an attribute or set of attributes that uniquely identify an entity
(row) in the entity set (table). The main difference between the primary key and the
candidate key in that is primary key does not contain NULL values.

Primary Key must be UNIQUE and NOT NULL.

Example:
EMPLOYEE
EID EMP _FNAME | EMP_INAME
12 Sai Keerthi
13 Potluri Siddhartha
14 Velagapudi Krishna
15 Rallapalli Suma

The primary key of the relation can be EID.

V.RASHMI (Assistant Professor) PVPSIT IT 7

DATABASE MANAGEMENT SYSTEMS

PVP20

UNIT-2

4) Foreign Key: A foreign key is a set of attributes in a table that refers to the primary
key of another table. The foreign key links these two tables.

Example:
Primary Key Foreign Key
+|I‘ STUDENT STATTUS) STUDENT DETAILS
SROLL NO | SNAME DOB SROLL_NO | PROJECT_ID | MARKS | STATUS

12 Keerthi 10-03-1999 12 Pl 100 Pass
13 Siddhartha 18-06-2001 13 P2 90 Pass
14 Krishna 21-09-2000 14 P3 80 Pass
13 Suma 30-01-1998

5) Secondary Key/Alternalte Key: A primary key is the field in a database that is the
primary key used to uniquely identify a record in a database. A secondary key is an
additional key, or alternate key, which can be use in addition to the primary key to
locate specific data.

Secondary Key is the key that has not been selected to be the primary key. However,
it is considered a candidate key for the primary key.

Therefore, a candidate key not selected as a primary key is called secondary key.
Candidate key is an attribute or set of attributes that you can consider as a Primary
key. Note: Secondary Key is not a Foreign Key.

Example 1:
Student_ID Student_Enroll Student_MName Student_Age Student_Email
096 9122717 Manish 25 aaa@gmail.com
055 9122655 Manan 23 abc@gmail com
067 8122699 Shreyas 28 pgri@gmail.com

Above, Student_ID, Student_Enroll and Student_Email are the candidate keys. They
are considered candidate keys since they can uniquely identify the student record.
Select any one of the candidate key as the primary key. Rest of the two keys would be
Secondary Key.

If you selected Student_ID as primary key, therefore Student_Enroll and
Student_Email will be Secondary Key (candidates of primary key).

Example 2:
Employee_ID Employee_No Employee_Name Employee_Email Employee_Dept
0989 E7897 Jacob jacob@example.com Finance
o777 E8768 Anna anna@example.com HR
0656 E8789 Tom tom@example.com Operations
V.RASHMI (Assistant Professor) PVPSIT IT 8

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

6)

7)

8)

Above, Employee_ID, Employee_No and Employee_Email are the candidate keys.
They uniquely identify the Employee record. Select any one of the candidate key as
the primary key. Rest of the two keys would be Secondary Key.

Unigue Key: A Unique Key is used to prevent duplicate values in a column. Primary
Key provided uniqueness to a table.

A primary key cannot accept NULL values; this makes Primary Key different from
Unique Key, since Unique Key allows one value as NULL value.

A table can only have a single Primary Key, whereas a Unique Key can be more than
one if you need it in the table.

Unique Key ensures that data is not duplicated in two rows in the database. A row in
the database can have null in case of Unique Key.

You cannot modify a Primary Key, but a Unique Key can be modified.

Composite Key: A primary key having two or more attributes is called composite
key. It is a combination of two or more columns.

Example 1: Here our composite key is OrderID and ProductID —

{OrderID, ProductlD}

Composite Key

22324 99 4
11332 99 9
23467 145 7
22324 129 3
Example 2:
<Student>
StudentID StudentEnrolINo StudentMarks StudentPercentage
S001 0721722 570 90
S002 0721790 490 80
S003 0721766 440 86

Above, our composite keys are StudentID and StudentEnrolINo. The table has two
attributes as primary key.

Therefore, the Primary Key consisting of two or more attribute is called Composite
Key.

Surrogate Key: A Surrogate Key’s only purpose is to be a unique identifier in a
database, for example, incremental key.

Surrogate Key has no actual meaning and is used to represent existence. It has an
existence only for data analysis.

Example: The surrogate key is

Key in the <ProductPrice> table.

V.RASHMI (Assistant Professor) PVPSIT IT 9

DATABASE MANAGEMENT SYSTEMS

<ProductPrice>

Key ProductiD
505_92 1987
698_56 1256
304_57 1898
458 66 1666

Other examples of a Surrogate Key:

Counter
System date/time stamp
Random alphanumeric string.

PVP20 UNIT-2

Price

200
170
250
110

9) Partial Key: Partial key is a key using which all the records of the table can not be

identified uniquely.

However, a bunch of related tuples can be selected from the table using the partial

key. Example: Consider the following schema-

Department (Emp_no , Dependent_name , Relation)

Emp_ no Dependent name
E1l Suman
E1l Ajay
E2 Vijay
E2 Ankush

Relation

Mother

Father

Father

Son

Here, using partial key Emp_no, we can not identify a tuple uniquely but we can

select a bunch of tuples from the table

Following are the important differences between Primary Key and Candidate key.

Sr. No. Key Primary Key

Definition Primary Key is a unique and non-
null key which identify a record
uniquely in table. A table can have

only one primary key

2 Null Primary key column value can not
be null

3 Objective Primary key is most important part
of any relation or table

4 Use Primary Key is a candidate key.

V.RASHMI (Assistant Professor) PVPSIT

Candidate key

Candidate key is also a unique key
to identify a record uniquely in a
table but a table can have multiple
candidate keys

Candidate key column can have
null value

Candidate key signifies as which
key can be used as Primary Key.

Candidate key may or may not be a
primary key

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Following are the important differences between Super Key and Candidate key

Sr. Key Super Key Candidate key
No.
1 Definition Super Key is used to identify all the Candidate key is a subset of Super
records in a relation Key
5 Use All super keys can't be candidate All candidate keys are super keys
keys
- Selection Super keys are combined together Candidate keys are combined
to create a candidate key together to create a primary key
4 Count Super keys are more than Candidate keys are less than Super
Wise Candidate keys Keys
Primary Key Candidate key
2 |t is used to ensure that the data in the specific column is unique @ |t can have NULL value
@ |t helps uniquely identify a record in a relational database 3 |t may or may not have a primary key.
2 One primary key only is allowed in a table 3 |t tells about which key can be used as a primary key.
3 |t is a combination of the ‘UNIQUE' and ‘Not Null’ constraints 3 |tis a unique key that helps identify a record uniquely in a table
5 This means it can't be a NULL value 3 Atable can have multiple candidate keys

2 |t is the most important part of a table
@ |tis a candidate key
@ |ts value can't be deleted from parent table

2 The constraint can be implicitly defined for the temporary tables

All tuples in a relation must also be distinct. This means that no two tuples can have the same
combination of values for all their attributes. There are other subsets of attributes of a relation
schema R with the property that no two tuples in any relation state r of R should have the
same combination of values for these attributes.

Suppose that we denote one such subset of attributes by SK; then for any two distinct tuples t1

and t2 in a relation state r of R, we have the constraint that: t:[S KF t.[SK] . such set of attributes SK
is called a superkey of the relation schema R

Superkey

A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R
can have the same value for SK. Every relation has at least one default superkey the set of all
its attributes.

Key

A key K of a relation schema R is a superkey of R with the additional property that removing
any attribute A from K leaves a set of attributes K- that is not a superkey of R anymore.
Hence, a key satisfies two properties:

V.RASHMI (Assistant Professor) PVPSIT IT 11

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

1. Two distinct tuples in any state of the relation cannot have identical values for (all)
the attributes in the key. This first property also applies to a superkey.

It is a minimal superkey that is, a superkey from which we cannot remove any
attributes and still have the uniqueness constraint in condition will hold.This property
IS not required by a superkey.

Example: Consider the STUDENT relation

2.

Relation Mame — ""’_“”b"“\'-'s' =
' SN T~ |

STUDENT _ — - » N — —
Name | Sen Home_phane Address Office_phone | Age| Gpa
Benjamin Bayer | 305-81-2435 | (B17)373-1616 | 2918 Bluebonnei Lane| NULL 19 | 3.
“ !Ch-ung-r_'ha Kim | 381-82-1245 | {B17)375-4408 | 125 H:hr Road MULL 18 | 289
Tuples %:J:I Dick Dawdaon 422-11-2320 | NULL 3452 Elgn Road {817)748-1253 | 256 | 3.53
k :F!Dhan Panchal | 488-22-1100 | {817)376-8821 | 285 Lark Lane {817)740-6462 | 28 |3.83
| Barbara Benson | 533-88-1238 | (817)830-8481 | 7384 Fontana Lane NULL 19 | 3.25

The attribute set {Ssn} is a key of STUDENT because no two student tuples can have
the same value for Ssn.

Any set of attributes that includes Ssn for example, {Ssn, Name, Age} is a superkey.

The superkey {Ssn, Name, Age} is not a key of STUDENT because removing Name
or Age or both from the set still leaves us with a superkey.

In general, any superkey formed from a single attribute is also a key. A key with multiple
attributes must require all its attributes together to have the uniqueness property.

Candidate Key

A relation schema may have more than one key. In this case, each of the keys is called a
candidate key.

Example: The CAR relation has two candidate keys: License_number and
Engine_serial_number

CAR

| License number | Engine_serial_number | Make Model | Year

Texnas ABC-739 AB9352 Ford Mustang | 02

Florida TVP-347 B43696 Oldsmobile | Cutlass 05

New York MPO-22 X83554 Oldsmobile | Delta 01

| California 432TFY | C43742 | Mercedes | 190D | 99 |

California RSK-629 YB82935 Toyota Camry 04

. Texas RSK-629 u028365 Jaguar s 04

Primary Key

It is common to designate one of the candidate keys as the primary key of the relation. This is
the candidate key whose values are used to identify tuples in the relation. We use the
convention that the attributes that form the primary key of a relation schema are underlined.
Other candidate keys are designated as unique keys and are not underlined.

V.RASHMI (Assistant Professor) PVPSIT IT 12

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Another constraint on attributes specifies whether NULL values are or are not permitted. For
example, if every STUDENT tuple must have a valid, non-NULL value for the Name
attribute, then Name of STUDENT is constrained to be NOT NULL.

1.2.3 Relational Databases and Relational Database Schemas

Relational database schema S is a set of relation schemas S = {R1, Rz, ..., Rm} and a s et of
integrity constraints IC.

Example of relational database schema:

COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,
WORKS_ON, DEPENDENT}

EMPLOYEE
| Fname | Minit | Lname | Ssn | Bdate | Address [gencer | Salary | Super ssn| Dno |

DEPARTMENT
Dname [Dnumber l Mgr_ssn Mgr_stan_da(e]

DEPT LOCATIONS
[Dnumber | Dlocation]

PROJECT
[Pname[Pmmbet[Plocalion I Dnum]

WORKS ON
[Essn [Poo | iows

DEPENDENT
| Essn | Dependent name | gender| Bdate | Relationship |

Figure: Schema diagram for the COMPANY relational database schema. The underlined
attributes represent primary keys

A Relational database state is a set of relation states DB = {4, I, ..., rn}.Each ri is a state of R
and such that the ri relation states satisfy integrity constraints specified in IC.

V.RASHMI (Assistant Professor) PVPSIT IT 13

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

EMPLOVEE
s | Mt | Lows | San Buate | Akdress e
bobe | B | e | 075058009 | 10050100 [230 Ponteun, Moceen, Ti| W0 [S0000 fsaseescss | s
Frackin | T | Vinag | 300405555 | 1550 1700 | R0 Vi, Monston, TH | W [40000 Jammssnssa | 5 |
Micm | 1| felmp | WSRITTTT | 100116 [Carte Sgrwg T1 | P |3m000 [wedstaan | 4
booden | 5 | Vinhace | BEIRSEEYY | 16610020 [291 By Belwrn T1 | F 43000 [BEB0S555E | &
Ruvest | K | Sy | S0 4 | 166000 12 |67 P Ot bomtas T2 | W [30000 [ra0dassas | s
Iy ; A -bl:n AR 1I:Ii-_l!|f-cl1j_!-t'.|1h|-h-|u-.1'.i [T MJ: 5
Motrrard i V| bk | SESETED | TR0 W O Callas, Mogaion, TE | W [38400 [WPRADT | 4
farwn | B |Borp | mwmnsssn [15000010 | 650 Sime, ot T | W [sso00 e 'R
CEFARTMENT
CEPT LOCATIONS
Dume | Dumber [Wpew | Mpowwiam | oo
Armearch B 333445555 10880812 -
Adariatiaiion 4 GRTES4TT 15950101 Fhin
4 Staftord
e = e i BEFEES555 18810818
& Bebase
WORKS ON 5 Sugarand
Easen Pro | Houm | 8 e
133458780 1 | a2s PROMECT
1TEISETRE 2 5 | Prusta Paurber | Plesten | Do
B 44 3 E00 Paochert 1 Belgar 5
EE3A5348L5 1 2.0 Pt 2 Sopaarnsd]
m -2 o6 w 3 .'hﬂh'l =|
AL AGEEE, 2 100 Lo enainn 10 Sapira i
Firar gz, 20 [r— 1
AHTALEEEE | 104 = 3
fc o2 2 B LA i [7] 1od
TEL4AERLE i) 1000 E———
PhpEETIT? | W | 500 | Faen Digrratert_rarme Bius | Redasorsbve
Ty 10 | 100 TAIEASESS | Aice F ol 19880405 | Daughor
GETRETEET 10 | 350 | | 20445555 | Theodos Wo| 18E31035 | Son
SETRETEET 30 50 | 133845055 Joy F || 19580503 | Spouae
DETESAT 0 20 ERESIDE L W | iR | Egoume
PIIBATEE | Mhetael W[18880104 | Son
el N E | 19881235 | Dasghier
BEBLESSSS 0| MULL | rasstes | Plestess F ol 10610505 | Speuse

Figure: One possible database state for the COMPANY relational database schema.

A database state that does not obey all the integrity constraints is called Invalid state and a
state that satisfies all the constraints in the defined set of integrity constraints IC is called a
Valid state.

Attributes that represent the same real-world concept may or may not have identical names in
different relations.

Example: The Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS stands
for the same real-world concept the number given to a department.

V.RASHMI (Assistant Professor) PVPSIT IT 14

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

That same concept is called Dno in EMPLOYEE and Dnum in PROJECT.

Alternatively, attributes that represent different concepts may have the same name in
different relations. For example, we could have used the attribute name Name for both Pname
of PROJECT and Dname of DEPARTMENT; in this case, we would have two attributes that
share the same name but represent different real world concepts project names and
department names.

1.2.4 Integrity, Referential Integrity, and Foreign Keys

Integrity Constraints
v

v

Integrity constraints are a set of rules. It is used to maintain the quality of information.

Integrity constraints ensure that the data insertion, updating, and other processes have to be
performed in such a way that data integrity is not affected.
v

Thus, integrity constraint is used to guard against accidental damage to the database. Types of
Integrity Constraint

Types of Integrity Constraint

Integrity Constraint

Domain Entity Integrity Referential Key Constraint
Constraint Constraint Integrity Constraint

1) Domain Constraints:
v

Domain constraints can be defined as the definition of a valid set of values for an

attribute.
v
The data type of domain includes string, character, integer, time, date, currency, etc. The
value of the attribute must be available in the corresponding domain.
Example:
ID NAME SEMENSTER | AGE
1000 Tom 1st 17
1001 Johnson 2nd 24
1002 Leonardo 5th 21
1003 Kate 3rd 19
1004 Morgan gth A

Mot allowed. Because AGE is an integer attribute

2) ‘I;ntitv integrity constraints

The entity integrity constraint states that primary key value can't be null.

This is because the primary key value is used to identify individual rows in relation and if
the primary key has a null'value, then we can't identify those rows.

A table can contain a null value other than the primary key field.

V.RASHMI (Assistant Professor) PVPSIT IT 15

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:
EMPLOYEE
EMP_ID EMP_NAME SALARY
123 Jack 30000
142 Harry 60000
164 John 20000
, Jackson 27000

Not allowed as primary key can't contain a NULL value

3) Referential Integrity Constraints
A referential integrity constraint is specified between two tables.

In the Referential integrity constraints, if a foreign key in Table 1 refers to the
Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be
null or be available in Table 2.

Example:
(Table 1)
EMP_MNAME| NAME AGE D_No — Foreign key

1 Jack 20 11

2 Harry A0 24

3 John 27 18 ——— Notallowedas D_No 18is

B not defined as a Primary

4 Devil 38 13 key of table 2 and In table 1.

ry D_No is a foreign key
defined
Relationships
(Table 2)
h
Primary Key ————D_No D_Location

11 Murnbeai
24 Delhi
13 Moida

Referential integrity constraint

The referential integrity constraint is specified between two relations and is used to
maintain the consistency among tuples in the two relations. Informally, the referential
integrity constraint states that a tuple in one relation that refers to another relation
must refer to an existing tuple in that relation.

V.RASHMI (Assistant Professor) PVPSIT IT 16

DATABASE MANAGEMENT SYSTEMS

7

PVP20 UNIT-2

Example: COMPANY database, the attribute Dno of EMPLOYEE gives the
department number for which each employee works; hence, its value in every
EMPLOYEE tuple must match the Dnumber value of some tuple in the
DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity
constraint between the two relation schemas R: and R..

A set of attributes FK in relation schema R is a foreign key of R: that references relation
R: if it satisfies the following rules:

1. Attributes in FK have the same domain(s) as the primary key attributes PK of R;
the attributes FK are said to reference or refer to the relation R..

2. Avalue of FK in a tuple t: of the current state r:(R:) either occurs as a value of PK
for some tuple tz in the current state r(R2) or is NULL.

In the former case, we have ti[FK] = t[PK], and we say that the tuple t: references or
refers to the tuple t..

In this definition, R: is called the referencing relation and R: is the referenced relation.
If these two conditions hold, a referential integrity constraint from R: to R: is said to
hold.

Key constraints
Keys are the entity set that is used to identify an entity within its entity set uniquely.

v
An entity set can have multiple keys, but out of which one key will be the primary key. A
primary key can contain a unique and null value in the relational table.
Example:
1D NAME SEMENSTER | AGE
1000 Tom 1st 17
1001 Johnson 2nd 24
1002 Leonardo | 5th 21
1003 Kate 3rd 19
1002 Morgan gth 22

Not allowed. Because all row must be unique

1.2.5 Other Types of Constraints

1) Semantic Integrity Constraints:

Semantic integrity constraints can be specified and enforced within the application programs
that update the database, or by using a general-purpose constraint specification language.
Examples of such constraints are the salary of an employee should not exceed the salary of
the employee’s supervisor and the maximum number of hours an employee can work on all
projects per week is 56. Mechanisms called triggers and assertions can be used. In SQL,
CREATE ASSERTION and CREATE TRIGGER statements can be used for this purpose.

V.RASHMI (Assistant Professor)

PVPSIT

IT

17

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2) Functional Dependency Constraints:

Functional dependency constraint establishes a functional relationship among two sets of
attributes X and Y. This constraint specifies that the value of X determines a unique value of
Y in all states of a relation; it is denoted as a functional dependency X — Y. We use
functional dependencies and other types of dependencies as tools to analyze the quality of
relational design and to normalize relations to improve their quality.

State constraints (static constraints)
Define the constraints that a valid state of the database must satisfy
Transition constraints (dynamic constraints)

Define to deal with state changes in the database

2. SOL

Introduction:

SQL was called SEQUEL (Structured English Query Language) and was designed and
implemented at IBM Research.The SQL language may be considered one of the major
reasons for the commercial success of relational databases. SQL is a comprehensive database
language. It has statements for data definitions, queries, and updates. Hence, it is both a DDL
and a DML. In addition, it has facilities for defining views on the database, for specifying
security and authorization, for defining integrity constraints, and for specifying transaction
controls. It also has rules for embedding SQL statements into a general-purpose programming
language such as Java, COBOL, or C/C++.

2.1 Data Definition

SQL uses the terms table, row, and column for the formal relational model terms relation,
tuple, and attribute, respectively. The main SQL command for data definition is the CREATE
statement, which can be used to create schemas, tables (relations), domains, views, assertions
and triggers.

2.1.1 Schema and Catalog Concepts in SOL

An SQL schema is identified by a schema name, and includes an authorization identifier to
indicate the user or account who owns the schema, as well as descriptors for each element in
the schema. Schema elements include tables, constraints, views, domains, and other
constructs (such as authorization grants) that describe the schema. A schema is created via
the CREATE SCHEMA statement.

Example: The following statement creates a schema called COMPANY, owned by the user
with authorization identifier ‘Jsmith’.

CREATE SCHEMA COMPANY AUTHORIZATION Jsmith;

In general, not all users are authorized to create schemas and schema elements. The privilege
to create schemas, tables, and other constructs must be explicitly granted to the relevant user
accounts by the system administrator or DBA.

SQL uses the concept of a catalog a named collection of schemas in an SQL environment. A
catalog always contains a special schema called INFORMATION_SCHEMA, which provides

V.RASHMI (Assistant Professor) PVPSIT IT 18

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

information on all the schemas in the catalog and all the element descriptors in these schemas.
Integrity constraints such as referential integrity can be defined between relations only if they
exist in schemas within the same catalog. Schemas within the same catalog can also share
certain elements, such as domain definitions.

2.1.2 The CREATE TABLE Command in SQL

The CREATE TABLE command is used to specify a new relation by giving it a name and
specifying its attributes and initial constraints. The attributes are specified first, and each
attribute is given a name, a data type to specify its domain of values, and any attribute
constraints, such as NOT NULL. The key, entity integrity, and referential integrity
constraints can be specified within the CREATE TABLE statement after the attributes are
declared, or they can be added later using the ALTER TABLE command.

Typically, the SQL schema in which the relations are declared is implicitly specified in the
environment in which the CREATE TABLE statements are executed. Alternatively, we can
explicitly attach the schema name to the relation name, separated by a period. For example, by
writing

CREATE TABLE COMPANY.EMPLOYEE ...
rather than
CREATE TABLE EMPLOYEE ...
The relations declared through CREATE TABLE statements are called base tables.

Examples:
CREATE TABLE EMPLOYEE

({ Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15 NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate DATE,
Address VARCHAR(30},
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn)] REFERENCES EMPLOYEE(Ssn},
FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber));

V.RASHMI (Assistant Professor) PVPSIT IT 19

DATABASE MANAGEMENT SYSTEMS PVP20

CREATE TABLE DEPARTMENT
{ Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHARI(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),

UNIQUE (Dname),

FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) 1
CREATE TABLE DEPT_LOCATIONS

{ Dnumber INT NOT NULL,

Dlocation VARCHAR(15) NOT NULL,
PRIMARY KEY (Dnumber, Diocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) J;

CREATE TABLE PROJECT
{ Pname VARCHARI(15) NOT NULL,
Pnumber INT NOT NULL,
Plocation VARCHARI(15},
Dnum INT NOT NULL,
PRIMARY KEY (Pnumber),
UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) 3

CREATE TABLE WORKS_ON

(Essn CHAR(9) NOT NULL,
Pno INT NOT NULL,
Hours DECIMAL(3,1) NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
{ Essn CHAR(9) NOT NULL,
Dependent_name VARCHARI(15) NOT NULL,
Sex CHAR,
Bdate DATE,
Relationship VARCHARI8),

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) J;

2.1.3 Attribute Data Types and Domains in SOL
Basic Data Types

1) Numeric Data Types includes
« integer numbers of various sizes (INTEGER or INT, and SMALLINT

« floating-point (real) numbers of various precision (FLOAT or REAL, and
PRECISION).
« Formatted numbers can be declared by using

DECIMAL(i,j) or DEC(i,j) or NUMERIC(i,j)

Where i - precision, total number of decimal digits

V.RASHMI (Assistant Professor) PVPSIT IT

UNIT-2

DOUBLE

20

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

J - scale, number of digits after the decimal point

2) Character String Data Types

fixed length CHAR(n) or CHARACTER(n), where n is the number of characters

varying length VARCHAR(n) or CHAR VARYING(n) or CHARACTER
VARYING(n), where n is the maximum number of characters

When specifying a literal string value, it is placed between single quotation marks
(apostrophes), and it is case sensitive

For fixed length strings, a shorter string is padded with blank characters to the right

4)

5)

6)

7)

Example: If the value ‘Smith’ is for the attribute of type CHAR(10), it is padded with
five blank characters to become ‘Smith’ if needed.

Padded blanks are generally ignored when strings are compared.

Another variable-length string data type called CHARACTER LARGE OBJECT or
CLOB is also available to specify columns that have large text values, such as
documents.

The CLOB maximum length can be specified in kilobytes (K), megabytes (M), or
gigabytes (G).

Example: CLOB(20M) specifies a maximum length of 20 megabytes.

Bit-string data types are either of

Fixed length n BIT(n) or varying length BIT VARYING(n), where n is the maximum
number of bits.

The default for n, the length of a character string or bit string, is 1.

Literal bit strings are placed between single quotes but preceded by a B to distinguish
them from character strings; Example: B’10101°

Another variable-length bitstring data type called BINARY LARGE OBJECT or
BLOB is also available to specify columns that have large binary values, such as
images.

The maximum length of a BLOB can be specified in kilobits (K), megabits (M), or
gigabits (G)

Example: BLOB(30G) specifies a maximum length of 30 gigabits.

A Boolean data type has the traditional values of TRUE or FALSE.In SQL, because
of the presence of NULL values, a three-valued logic is used, so a third possible value
for a Boolean data type is UNKNOWN.

The DATE data type has ten positions, and its components are YEAR, MONTH, and
DAY in the form YYYY-MM-DD.

The TIME data type has at least eight positions, with the components HOUR,
MINUTE, and SECOND in the form HH:MM:SS.

Only valid dates and times should be allowed by the SQL implementation.

TIME WITH TIME ZONE data type includes an additional six positions for
specifying the displacement from the standard universal time zone, which is in the
range +13:00 to 12:59 in units of HOURS:MINUTES. If WITH TIME ZONE is not
included, the default is the local time zone for the SQL session.

Additional Data Types:

V.RASHMI (Assistant Professor) PVPSIT IT 21

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

1) Timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a
minimum of six positions for decimal fractions of seconds and an optional WITH
TIME ZONE qualifier.

2) INTERVAL data type. This specifies an interval a relative value that can be used to
increment or decrement an absolute value of a date, time, or timestamp. Intervals are
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

It is possible to specify the data type of each attribute directly or a domain can be declared,
and the domain name used with the attribute Specification. This makes it easier to change the
data type for a domain that is used by numerous attributes in a schema, and improves schema
readability. For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) for the attributes Ssn and Super_ssn of
EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn of DEPENDENT

2.2 Constraints
Basic constraints that can be specified in SQL as part of table creation:

e Key and referential integrity constraints
e Restrictions on attribute domains and NULLs
e Constraints on individual tuples within a relation

2.2.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if
NULL is not permitted for a particular attribute. This is always implicitly specified for the
attributes that are part of the primary key of each relation, but it can be specified for any other
attributes whose values are required not to be NULL.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any new tuple
if an explicit value is not provided for that attribute.

CREATE TABLE DEPARTMENT
(o
Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555°,

Another type of constraint can restrict attribute or domain values using the CHECK clause
following an attribute or domain definition . For example, suppose that department numbers
are restricted to integer numbers between 1 and 20; then, we can change the attribute
declaration of Dnumber in the DEPARTMENT table to the following:

Dnumber INT NOT NULL CHECK (Dnumber >0 AND Dnumber < 21);

V.RASHMI (Assistant Professor) PVPSIT IT 22

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The CHECK clause can also be used in conjunction with the CREATE DOMAIN
statement.For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM >0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes that refer
to department number such as Dnumber of DEPARTMENT, Dnum of PROJECT, Dno of
EMPLOYEE, and so on.

2.2.2 Specifying Key and Referential Integrity Constraints

The PRIMARY KEY clause specifies one or more attributes that make up the primary key
of a relation. If a primary key has a single attribute, the clause can follow the attribute
directly. For example, the primary key of DEPARTMENT can be specified as:

Dnumber INT PRIMARY KEY;

The UNIQUE clause can also be specified directly for a secondary key if the secondary key
is a single attribute, as in the following example:

Dname VARCHAR(15) UNIQUE;
Referential integrity is specified via the FOREIGN KEY clause
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(ssn),
FOREIGN KEY (Dno) REFERENCES DEPARTMENT (Dnumber)

A referential integrity constraint can be violated when tuples are inserted or deleted, or when
a foreign key or primary key attribute value is modified. The default action that SQL takes
for an integrity violation is to reject the update operation that will cause a violation, which is
known as the RESTRICT option.

The schema designer can specify an alternative action to be taken by attaching a referential
triggered action clause to any foreign key constraint. The options include SET NULL,
CASCADE, and SET DEFAULT. An option must be qualified with either ON DELETE or
ON UPDATE.

FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber) ON DELETE SET
DEFAULT ON UPDATE CASCADE

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET NULL
ON UPDATE CASCADE

FOREIGN KEY E}Dnumbe‘? REFERENCES DEPARTMENT(Dnumber) ON DELETE
CASCADE ON UPDATE CASCADE

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for
both ON DELETE and ON UPDATE: The value of the affected referencing attributes is
changed to NULL for SET NULL and to the specified default value of the referencing
attribute for SET DEFAULT.

The action for CASCADE ON DELETE is to delete all the referencing tuples whereas the
action for CASCADE ON UPDATE is to change the value of the referencing foreign key

V.RASHMI (Assistant Professor) PVPSIT IT 23

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

attribute(s) to the updated (new) primary key value for all the referencing tuples. It is the
responsibility of the database designer to choose the appropriate action and to specify it in the
database schema. As a general rule, the CASCADE option is suitable for “relationship”
relation such as WORKS ON: for relations that represent multivalued attributes, such as
DEPT_LOCATIONS; and for relations that represent weak entity types, such as
DEPENDENT.

2.2.3 Giving Names to Constraints

The names of all constraints within a particular schema must be unique. A constraint name is
used to identify a particular constraint in case the constraint must be dropped later and
replaced with another constraint.

2.2.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by special keywords,
other table constraints can be specified through additional CHECK clauses at the end of a
CREATE TABLE statement. These can be called tuple-based constraints because they apply to
each tuple individually and are checked whenever a tuple is inserted or modified

For example, suppose that the DEPARTMENT table had an additional attribute
Dept_create_date, which stores the date when the department was created. Then we could
add the following CHECK clause at the end of the CREATE TABLE statement for the
DEPARTMENT table to make sure that the managers start date is later than the department
creation date.

CHECK (Dept_create_date <= Mgr_start_date);

2.3 Basic Queries for Retrival in SOL

SQL has one basic statement for retrieving information from a database: the SELECT
statement.

2.3.1 The SELECT-FROM-WHERE Structure of Basic SOL Queries

The basic form of the SELECT statement, sometimes called a mapping or a select-from-
where block, is formed of the three clauses SELECT, FROM, and WHERE and has the
following form:

SELECT <attribute list>
FROM <table list>
WHERE <condition>;
Where,

e <attribute list> is a list of attribute names whose values are to be retrieved by the query
e <table list> is a list of the relation names required to process the query

e <condition> is a conditionnal (Boolean) expression that identifies the tuples to be
retrieved by the query

Examples:
1) Retrieve date of birth and the address of the employee(s) whose name is ‘John
B.Smith’. SELECT Bdate, Address

V.RASHMI (Assistant Professor) PVPSIT IT 24

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2)

3)

FROM EMPLOYEE
WHERE Fname="John’ AND Minit="B” AND Lname="Smith’;

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes. The WHERE clause specifies the Boolean
condition that must be true for any retrieved tuple, which is known as the selection
condition.

Retrieve the name and address of all employees who work for the ‘Research’
department.

SELECT Fname, Lname, Address

FROM EMPLOYEE, DEPARTMENT

WHERE Dname="Reaearch’ AND Dnumber=Dno;

In the WHERE clause, the condition Dname="Reacarch’ is a selection condition that
chooses the particular tuple of interest in the DEPARTMENT table, because Dname is
an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join
condition, because it combines two tuples: one from DEPARTMENT and one from
EMPLOYEE, whenever the value of Dnumber in DEPARTMENT is equal to
thevalue of Dno in EMPLOYEE.A query that involves only selection and join
conditions plus projection attributes is known as a select-project-join query.

For every project located in ‘Stafford’, list the project number, the controlling
department number, and the department manager’s last name, address and birth date.
SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dname=Dnumber AND Mgr_Ssn=Ssn AND Plocation="Stafford’;

The join condition Dnum = Dnumber relates a project tuple to its controlling
department tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling
department tuple to the employee tuple who manages that department. Each tuple in
the result will be a combination of one project, one department, and one employee
that satisfies the join conditions. The projection attributes are used to choose the
attributes to be displayed from each combined tuple.

2.3.2 Ambiguous Attribute Names, Aliasing, Renaming and Tuple Variables

In SQL, the same name can be used for two or more attributes as long as the attributes are in
different relations. If this is the case, and a multitable query refers to two or more attributes
with the same name, we must qualify the attribute name with the relation name to prevent
ambiguity. This is done by prefixing the relation name to the attribute name and separating
the two by a period.

Example: Retrieve the name and address of all employees who work for the ‘Research’
department

SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT

WHERE DEPARTMENT.Name="Research” AND
DEPARTMENT.Dnumber=EMPLOY EE.Dnumber;

V.RASHMI (Assistant Professor) PVPSIT IT 25

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The ambiguity of attribute names also arises in the case of queries that refer to the same
relation twice. For example consider the query: For each employee retrieve them employee’s
first and last name and the first and last name of his or her immediate supervisor.

SELECT E.Fname, E.Lname, S.Fname, S.Lhame
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called aliases or
tuple variables, for the EMPLOYEE relation. An alias can follow the keyword AS, or it can
directly follow the relation name for example, by writing EMPLOYEE E, EMPLOYEE S. It
is also possible to rename the relation attributes within the query in SQL by giving them
aliases. For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)
in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so on.

2.3.3 Unspecified WHERE Clause and Use of the Asterisk

A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the
relation specified in the FROM clause qualify and are selected for the query result.If more
than one relation is specified in the FROM clause and there is no WHERE clause, then the
CROSS PRODUCT all possible tuple combinations of these relations is selected.

Example: Select all EMPLOYEE Ssns and all combinations of EMPLOYEE Ssn and
DEPARTMENT Dname in the database.

SELECT Ssn

FROM EMPLOYEE;

SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute
names explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes.
For example, the following query retrieves all the attribute values of any EMPLOYEE who
works in DEPARTMENT number 5

SELECT * FROM EMPLOYEE WHERE Dno=5;

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE Dname="Research’
AND Dno=Dnumber;

SELECT * FROM EMPLOYEE, DEPARTMENT;

2.3.4 Tables as Sets in SOL

SQL usually treats a table not as a set but rather as a multiset; duplicate tuples can appear
more than once in a table, and in the result of a query. SQL does not automatically eliminate
duplicate tuples in the results of queries, for the following reasons:

V.RASHMI (Assistant Professor) PVPSIT IT 26

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

e Duplicate elimination is an expensive operation. One way to implement it is to sort
the tuples first and then eliminate duplicates.

e The user may want to see duplicate tuples in the result of a query.

e When an aggregate function is applied to tuples, in most cases we do not want to
eliminate duplicates.

If we do want to eliminate duplicate tuples from the result of an SQL query, we use the keyword
DISTINCT in the SELECT clause, meaning that only distinct tuples should remain in the result.

Example : Retrieve the salary of every employee and all distinct salary values
@) SELECT ALL Salary FROM EMPLOYEE;
(b) SELECT DISTINCT Salary FROM EMPLOYEE;

4] Salaw 18] Salm
30000 30000
40000 40000
25000 25000
43000 43000
38000 38000
25000 55000
25000
55000

SQL has directly incorporated some of the set operations from mathematical set theory,
Whi(\:D are also part of relational algebra. There are

set union (UNION)
set difference (EXCEPT) and
set intersection (INTERSECT)

The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are
eliminated from the result. These set operations apply only to union-compatible relations, so
we must make sure that the two relations on which we apply the operation have the same
attributes and that the attributes appear in the same order in both relations.

Example: Make a list of all project numbers for projects that involve an employee whose last
name is ‘Smith’ either as a worker or as a manager of the department that controls the project

(SELECT DISTINCT Pnumber FROM PROJECT, DEPARTMENT,
EMPLOYEE WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND
UNION

(SELECT DISTINCT Pnumber FROM PROJECT, WORKS_ON, EMPLOYEE WHERE
Pnumber=Pno AND Essn=Ssn AND Lname="Smith’);

V.RASHMI (Assistant Professor) PVPSIT IT 27

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.3.5 Substring Pattern Matching and
Arithmetic Operators several more features of SQL

The first feature allows comparison conditions on only parts of a character string, using the
LIKE comparison operator. This can be used for string pattern matching. Partial strings are
specified using two reserved characters:

% replaces an arbitrary number of zero or more

characters _ (underscore) replaces a single character

For example, consider the following query: Retrieve all employees whose address is in
Houston, Texas

SELECT Fname, Lname FROM EMPLOYEE WHERE Address
LIKE ‘“%HoustonTX%’;

To retrieve all employees who were born during the 1950s, we can use Query
SELECT Fname, Lname FROM EMPLOYEE
WHERE Bdate LIKE ¢ 5 %

If an underscore or % is needed as a literal character in the string, the character should be
preceded by an escape character, which is specified after the string using the keyword
ESCAPE.

Example:

‘AB\ CD\%EF’ ESCAPE *\’ represents the lateral string, AB_CD%EF because \ is specified
as the escape character. Also, we need a rule to specify apostrophes (°*) so that it will not be
interpreted as ending string.

Another feature allows the use of arithmetic in queries. The standard arithmetic operators for
addition (+), subtraction (), multiplication (*), and division (/) can be applied to numeric
values or attributes with numeric domains. For example, suppose that we want to see the
effect of giving all employees who work on the ‘ProductX’ project a 10 percent raise; we can
issue the following query:

SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal FROM EMPLOYEE
AS E, WORKS_ON AS W, PROJECT ASP

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND P.Pname="ProductX’;

Example: Retrieve all employees in department 5 whose salary is between $30,000 and
$40,000.

SELECT * FROM EMPLOYEE WHERE (Salary BETWEEN 30000 AND 40000)
AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) is equivalent to the condition ((Salary
>= 30000) AND (Salary <=40000)).

V.RASHMI (Assistant Professor) PVPSIT IT 28

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.3.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one or more
of the attributes that appear in the query result, by using the ORDER BY clause.

Example: Retrieve a list of employees and the projects they are working on, ordered by
department and, within each department, ordered alphabetically bylast name, then first name.

SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W, PROJECT P WHERE
D.Dnumber= E.Dno AND E.Ssn= W.Essn AND W.Pno= P.Pnumber ORDER BY
D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values.We can specify the keyword DESC if we
want to see the result in a descending order of values. The keyword ASC can be used to
specify ascending order explicitly. For example, if we want descending alphabetical order on
Dname and ascending order on Lname, Fname, the ORDER BY clause can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

2.4 INSERT, DELETE, and UPDATE Statements in SQL

2.4.1 The INSERT Command

INSERT is used to add a single tuple to a relation. We must specify the relation name and a
list of values for the tuple. The values should be listed in the same order in which the
corresponding attributes were specified in the CREATE TABLE command.

Example:

INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653°, ‘1962-
12-30°, 98 Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653", 4);

INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653");

A second form of the INSERT statement allows the user to specify explicit attribute names
that correspond to the values provided in the INSERT command. The values must include all
attributes with NOT NULL specification and no default value. Attributes with NULL allowed
or DEFAULT values are the ones that can be left out.

A variation of the INSERT command inserts multiple tuples into a relation in conjunction
with creating the relation and loading it with the result of a query. For example, to create a
temporary table that has the employee last name, project name, and hours per week for each
employee working on a project, we can write the statements in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO (
Emp_name VARCHAR(15),
Proj_name VARCHAR(15),

V.RASHMI (Assistant Professor) PVPSIT IT 29

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Hours_per_week DECIMAL(3,1));
U3B: INSERT INTO WORKS_ON_INFO
(Emp_name, Proj_name,Hours_per_week)
SELECT E.Lname, P.Pname, W.Hours
FROM PROJECT P, WORKS_ON W, EMPLOYEE E
WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined information
retrieved from the database by the query in U3B. We can now query WORKS_ON_INFO as
we would any other relation;

2.4.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar
to that used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted
from only one table at a time. The deletion may propagate to tuples in other relations if
referential triggered actions are specified in the referential integrity constraints of the DDL.

Example:

DELETE FROM EMPLOYEE WHERE Lname="Brown’;

Depending on the number of tuples selected by the condition in the WHERE clause, zero,
one, or several tuples can be deleted by a single DELETE command. A missing WHERE
clause specifies that all tuples in the relation are to be deleted; however, the table remains in
the database as an empty table.

2.4.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected Tuples.
An additional SET clause in the UPDATE command specifies the attributes to be modified
and their new values. For example, to change the location and controlling department number
of project number 10 to ‘Bellaire’ and 5, respectively, we use

UPDATE PROJECT SET Plocation="Bellaire’, Dnum=5 WHERE Pnumber=10;

As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples
to be modified from a single relation. However, updating a primary key value may propagate
to the foreign key values of tuples in other relations if such a referential triggered action is
specified in the referential integrity constraints of the DDL.

Several tuples can be modified with a single UPDATE command. An example is to give all
employees in the ‘Research’ department a 10 percent raise in salary, as shown by the
following query

UPDATE EMPLOYEE
SET Salary = Salary * 1.1
WHERE Dno = 5;

V.RASHMI (Assistant Professor) PVPSIT IT 30

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Each UPDATE command explicitly refers to a single relation only. To modify multiple
relations, we must issue several UPDATE commands.

2.5 SOL Advanced Queries: Assertions, Triggers, and
Views Three-Valued Logic of SOL:

e SQL uses a three-valued logic: besides true and false, the result of logical expressions
can also be unknown.
e SQL’s three valued logic is a consequence of supporting null to mark absent data.
If a null value affects the result of a logical expression, the result is neither true nor
false but unknown.
e The three-valued logic is an integral part of Core SQL and it is followed by every
SQL database. Following are the categories:
I. Comparisons to NULL
Il. Logical Operations Involving Unknown
I11. General Rule: where, having, when, etc.

|. Comparisons to null:

e The SQL null value basically means “could be anything”. It is therefore impossible to
tell whether a comparison to null is true or false.

e That’s where the third logical value, unknown, comes in. Unknown means “true or
false, depending on the null values”.

e The result of each of the following comparisons is therefore unknown:0
NULL=1
NULL <>1
NULL >1
NULL = NULL

e Nothing equals null.
Not even null equals null because each null could be different.

tree

I1. Logical Operations Involving Unknown:

e Inlogical connections (and, or), unknown behaves like the null value in comparisons:
The result is unknown if it depends on an operand that is unknown.

e The reason is that the result of a logical connection is only unknown if it actually
depends on an operand that is unknown.

e Example:
(NULL=1)OR(1=1)

e Although the comparison to null makes the first operand of the operation unknown, the
total result is still true because or operations are true as soon as any operand is true.

e In the example above you can assume the values 0 and 1 instead of null to make the
result of the first operand false and true respectively.

V.RASHMI (Assistant Professor) PVPSIT IT 31

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

But the result of the complete expression is true in both cases — it does not depend on
the value you assume for null.

A similar case applies to the and operator: and connections are false as soon as any
operand is false.

The result of the following expression is therefore

false: (NULL =1) AND (0=1)

In all other cases, any unknown operand for not, and, and or causes the logical
operation to return unknown.

General Rule: where, having, when, etc.

It is not enough that a condition is not false.
The result of the following query is therefore always the empty set:

SELECT col FROM t
WHERE col = NULL

The result of the equals comparison to null is always unknown. The where clause thus
rejects all rows.

Use the null predicate to search for null values:

WHERE col IS NULL

Odd Consequence: not in (null, ...) is never true
Consider this example:
WHERE 1 NOT IN (NULL)
Y True
Unknown
False

Two values for null that make the expression true and false respectively. Let’s take 0
and 1.

For 0, the expressions becomes 1 NOT IN (0), which is true.

For 1, the expression becomes 1 NOT IN (1), which is clearly false.

The result of the original expression is therefore unknown, because it changes if null
is replaced by different values.

Result of not in predicates that contain a null value is never true:

WHERE 1 NOT IN (NULL, 2)

This expression is again unknown because substituting different values for null (e.g. 0
and 1) still influences the result.

Not in predicates that contain a null value can be false:

WHERE 1 NOT IN (NULL, 1)

No matter which value you substitute for the null (0, 1 or any other value) the result is
always false.

V.RASHMI (Assistant Professor) PVPSIT IT 32

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Nested Queries:

In nested queries, a query is written inside a query. The result of inner query is used in execution
of outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables for

understanding nested queries.

STUDENT Table data:

S_ID S_NAME S_ADDRESS

S1 RAM DELH

S2 RAMESH GURGAON

S3 SUJIT ROHTAK

S4 SURESH DELH
COURSE table data:

C_ID C_MNAME

c1i DSA

c2

cC3

STUDENT_COURSE table data:

Programming

DBMS

S_ID C_ID

S1

S1

52

53

S4

S4

c

c3

cC1

c2

c2

ca

S_PHONE S_AGE
9455123451 18
9652431543 18
9156253131 20
9156768971 18

There are mainly two types of nested queries:

1.
2.

I. Independent Nested Queries:

Independent Nested Queries
Co-related Nested Queries

V.RASHMI (Assistant Professor)

In independent nested queries, query execution starts from innermost query to

outermost queries.

The execution of inner query is independent of outer query, but the result of inner
query is used in execution of outer query.

Various operators like IN, NOT IN, ANY, ALL etc are used in writing independent

nested queries.

IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we
can write it with the help of independent nested query and IN operator.

From COURSE table, we can find out C_ID for C NAME ‘DSA’ or DBMS’ and we
can use these C_IDs for finding S_IDs from STUDENT_COURSE TABLE.

PVPSIT IT 33

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

e STEP 1: Finding C_ID for C_NAME ="DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_ NAME = ‘DBMS’

e STEP 2: Using C_ID of step 1 for finding S_ID
Select S_ID from STUDENT_COURSE where C_ID IN
(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or
C_NAME="DBMS’);

e The inner query will return a set with members C1 and C3 and outer query will return
those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case).
So, it will return S1, S2 and S4.

e Note: If we want to find out names of STUDENTS who have either enrolled in
‘DSA’ or ‘DBMS’, it can be done as:

uery:
Select S NAME from STUDENT where S_ID IN (Select
S_ID from STUDENT_COURSE where C_ID IN
(SELECT C_ID from COURSE where
C_NAME=DSA’ or C NAME="DBMS’));

I. Independent Nested Queries:

e NOT IN: If we want to find out S_IDs of STUDENTS who have neither enrolled in
‘DSA’ nor in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN
(Select S_ID from STUDENT_COURSE where C_ID IN
(SELECT C_ID from COURSE where
C_NAME=DSA’ or C NAME="DBMS’));

e The innermost query will return a set with members C1 and C3. Second inner query
will return those S_1Ds for which C_ID is equal to any member of set (C1 and C3 in
this case) which are S1, S2 and S4. The outermost query will return those S_IDs
where S_ID is not a member of set (S1, S2 and S4). So it will return S3.

I1. Co-related Nested Queries:

e The output of inner query depends on the row which is being currently executed in
outer query.
Example: If we want to find out S_ NAME of STUDENTSs who are enrolled in C_ID
‘C1’, it can be done with the help of co-related nested query as:
Select S NAME from STUDENT S where EXISTS
(select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and
SC.C_ID="C1’);

e Foreach row of STUDENT S, it will find the rows from STUDENT _COURSE where
S.S_ID=SC.S_ID and SC.C_ID="CI".

e |f for a S_ID from STUDENT S, at least a row exists in STUDENT_COURSE SC
with C_ID="C1’, then inner query will return true and corresponding S_ID will be
returned as output.

V.RASHMI (Assistant Professor) PVPSIT IT 34

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

EXISTS:

e The EXISTS condition in SQL is used to check whether the result of a correlated
nested query is empty (contains no tuples) or not.
e The result of EXISTS is a boolean value True or False.
e |tcanbeusedina
SELECT, UPDATE, INSERT or DELETE statement.
e Syntax:
SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name(s)
FROM table_name
WHERE condition);

o Examples:
Consider the following two relation “Customers” and “Orders”.
Customers
customer_id Iname fname website
401 Singh Dolly abc.com
402 Chauhan Anuj def.com
403 Kumar Niteesh ghi.com
404 Gupta Shubham jkl.com
405 Walecha Divya abc.com
406 Jain Sandeep jkl.com
407 Mehta Rajiv abc.com
408 Mehra Anand abc.com
Orders
order_id c_id order_date
1 407 2017-03-03
2 405 2017-03-05
3 408 2017-01-18
4 404 2017-02-05
Queries:

I. Using EXISTS condition with SELECT statement
To fetch the first and last name of the customers who placed at least one order.

SELECT fname, Iname
FROM Customers
WHERE EXISTS (SELECT *
FROM Orders
WHERE Customers.customer_id = Orders.c_id);

V.RASHMI (Assistant Professor) PVPSIT IT 35

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Output:
fname Iname
Shubham Gupta
Divya Walecha
Rajiv Mehta
Anand Mehra

1. Using NOT with EXISTS
Fetch last and first name of the customers who has not placed any order.

SELECT Iname, fname
FROM Customer
WHERE NOT EXISTS (SELECT *
FROM Orders
WHERE Customers.customer_id = Orders.c_id);

Output:
Iname fname
Singh Dolly
Chauhan Anuj
Kumar Niteesh
Jain Sandeep

111. Using EXISTS condition with DELETE statement
Delete the record of all the customer from Order Table whose last name is ‘Mehra’.

DELETE
FROM Orders
WHERE EXISTS (SELECT *
FROM customers
WHERE Customers.customer_id = Orders.cid
AND Customers.Iname = '‘Mehra’);
SELECT * FROM Orders;

Output:
order id c id order date
1 407 2017-03-03
2 405 2017-03-05
4 404 2017-02-05

1V. Using EXISTS condition with UPDATE statement
Update the Iname as ‘Kumari’ of customer in Customer Table whose customer_id is 401.

UPDATE Customers

SET Iname = "Kumari'

WHERE EXISTS (SELECT *
FROM Customers

V.RASHMI (Assistant Professor) PVPSIT IT 36

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2
WHERE customer_id = 401);
SELECT * FROM Customers;
Output:
customer_id Iname fname website
401 Kumari Dolly abc.com
402 Chauhan Anuj def.com
403 Kumar Niteesh ghi.com
404 Gupta Shubham jkl.com
405 Walecha Divya abc.com
406 Jain Sandeep jkl.com
407 Mehta Rajiv abc.com
408 Mehra Anand abc.com
Aggregate functions:
Aggregate functions return single values by performing action of a group of values.
Example: Emp
Emp_id Name calary Age
350 Mark 55000 28
351 Steve e0000 30
352 Roser 50000 31
353 Joseph 75000 34
354 Avlin Q0000 32
e Sum (): this function calculates a sum of a group of values.
Syntax: sum(col _name)
Example:
Select sum(salary) from Emp;
Output:
340000
e Average (): this function returns the average of group of values.
Syntax: average(col _name)
Example:
Select avg(salary) from Emp;
Output:
68000
e Max (): this function returns the highest value from group of
values. Syntax: max(col _name)
Example:
Select max(salary) from Emp;
Output:
90000
e Min (): this function returns the least value from group of values.
V.RASHMI (Assistant Professor) PVPSIT IT 37

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Syntax: min(col _name)
Example:
Select min(salary) from Emp;

Output:
55000

e Count (): this function counts the number of values in a
group._Syntax: count(col _name)
Example:
Select count(name) from Emp where salary =
60000; Output:
2

Group By:

e The GROUP BY Statement in SQL is used to arrange identical data into groups with
the help of some functions. i.e if a particular column has same values in different rows
then it will arrange these rows in a group.

e Important Points:
Y GROUP BY clause is used with the SELECT statement.
In the query, GROUP BY clause is placed after the WHERE clause.
In the query, GROUP BY clause is placed before ORDER BY clause if used any.

e Syntax:
SELECT columnl, function_name(column2)
FROM table_name WHERE condition GROUP BY columnl,
column2 ORDER BY columni, column2;
function_name: Name of the function used for example, SUM() , AVG().
table name: Name of the table.
condition: Condition used.

Sample data tables to use in Query:

Employee
S NO NAME SALARY AGE
= Harsh 2000 i9
2 Dhanraj 3000 20
3 Ashish 1500 i9
e Harsh 3500 i9
=3 Ashish 1500 i9

Example:

e Group By single column: Group By single column means, to place all the rows with
same value of only that particular column in one group.

e Consider the query as shown below:

V.RASHMI (Assistant Professor) PVPSIT IT 38

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

SELECT NAME, SUM(SALARY) FROM
Employee GROUP BY NAME;

OUTPUT:
nNAME SALARY
Ashish 3000
Drihanraj 2000
Harsh 5500

As you can see in the above output, the rows with duplicate NAMEs are grouped under same
NAME and their corresponding SALARY is the sum of the SALARY of duplicate rows.

The SUM() function of SQL is used here to calculate the sum.

Group By multiple columns: Group by multiple column is say for example, GROUP BY
columnl, column2. This means to place all the rows with same values of both the columns
columnl and column2 in one group.

uery:
SELECT SUBJECT, YEAR, Count(*) FROM
Student GROUP BY SUBJECT, YEAR;
Output:
SUBJECT YEAR Count
English 1 3
English 2 2
Mathematics 1 2

As you can see in the above output the students with both same SUBJECT and YEAR are
placed in same group. And those whose only SUBJECT is same but not YEAR belongs to
different groups. So here we have grouped the table according to two columns or more than
one column.

HAVING Clause:

e HAVING clause can be used to place conditions to decide which group will be the
part of final result-set.

e \We can not use the aggregate functions like SUM(), COUNT() etc. with WHERE
clause.

e So we have to use HAVING clause if we want to use any of these functions in the
conditions.

e As you can see in the output only one group out of the three groups appears in the
result-set as it is the only group where sum of SALARY is greater than 3000.

e So we have used HAVING clause here to place this condition as the condition is
required to be placed on groups not columns.

Syntax:

SELECT columnl, function_name(column2)
FROM table_name

V.RASHMI (Assistant Professor) PVPSIT IT 39

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

WHERE condition
GROUP BY columnl, column2
HAVING condition
ORDER BY columnl, column2;

function_name: Name of the function used for example, SUM() , AVG().
table name: Name of the table.
condition: Condition used.

SELECT NAME, SUM(SALARY) FROM Employee
GROUP BY NAME
HAVING SUM(SALARY)>3000;

Output:

ORDER BY:

e The ORDER BY statement in SQL is used to sort the fetched data in either ascending
or descending according to one or more columns.

e By default ORDER BY sorts the data in ascending order.

e We can use the keyword DESC to sort the data in descending order and the keyword
ASC to sort in ascending order.

e Sort according to one column

e To sort in ascending or descending order we can use the keywords ASC or DESC
respectively.

Syntax:

SELECT * FROM table_name ORDER BY column_name ASC|DESC;

Where

table_name: name of the table.

column_name: name of the column according to which the data is needed to be arranged.
ASC: to sort the data in ascending order.

DESC: to sort the data in descending order.

|: use either ASC or DESC to sort in ascending or descending order

Sort according to multiple columns:
To sort in ascending or descending order we can use the keywords ASC or DESC respectively.
To sort according to multiple columns, separate the names of columns by the (,) operator.

Syntax:
SELECT * FROM table_name ORDER BY columnl ASC|DESC, column2 ASC|DESC;

V.RASHMI (Assistant Professor) PVPSIT IT 40

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2
ROLL MO MAME ADDRESS BPHONE Age
1 HAeRSH DELHI e oy e e o A 18
- FRATIE BIHAR ORI 19
3 RIVAMNKA SAL LR e ey 20
4 CEEF FRAN M A AR SO RO 18
= AT AR BRI T b e 19
& CHARRLAD BARABAIAR b e 20
T ROHIT BALLURGHAT SRR 18
;_I ;.i;l-:n | o .n.|_|r-=;,_.|r-r | -x::.::_-txx:-:.;'.:-.x - :i_q

Now consider the above database table and find the results of different queries.
Sort according to a single column:
In this example, we will fetch all data from the table Student and sort the result in descending
order according to the column ROLL_NO.
uery:

SELECT * FROM Student ORDER BY ROLL_NO DESC;

Output:
ROLL_NO NAME ADDRESS PHONE Age
8 NIRAJ ALIPUR 0 0. 0.9 090 0.0 9.4 19
T ROHIT BALURGHAT 0. 9. 9. 9. 6.0 0.0 & 4 18
& DHANRAJ BARABAJAR HKAXHK KKK XKHKXX 20
5 SAPTARHI KOLKATA KX XK AKX K XK KKK 9
4 DEEP RAMNAGAR PO O 0. 0.8 .0.6.0. 0.4 18
3 RIYANKA SILIGURI P 9. 0.6.6.6.6.6.9.9.¢ 20
2 PRATIK BIHAR R R HKK KKK KK 19
1 HARSH DELHI KX XK AKX KK AKX XK 18

In the above example, if we want to sort in ascending order we have to use ASC in place of
DESC.

Sort according to multiple columns:

e In this example we will fetch all data from the table Student and then sort the result in
ascending order first according to the column Age. And then in descending order
according to the column ROLL_NO.

e Note:

ASC is the default value for the ORDER BY clause. So, if we don’t specify anything
after the column name in the ORDER BY clause, the output will be sorted in
ascending order by default.

uery:

SELECT * FROM Student ORDER BY Age ASC, ROLL_NO DESC;

V.RASHMI (Assistant Professor) PVPSIT IT 41

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

OQutput:
ROLL NO NAME ADDRESS PHONE Age
7 ROHIT BALURGHAT DK KK XK XK XK 18
s DEEP RAMNAGAR KR K XK KX XXX 18
1 HARSH DELHI P O & & & 0.0 & O O 4 18
8 NIRA ALIPUR KKK KKK KK XK XK 5 5o
5 SAPTARHI KOLKATA DRI KKK KK XK XK 1<
2 PRATIK BiHAR KK XK XK KK XX 15
S DHANRAD BARABAJAR DK XK KKK XK XK 20
= RIYANKA SILIGURI KKK KK XK X XK 20

In the above output, we can see that first the result is sorted in ascending order according to
Age. There are multiple rows of having the same Age. Now, sorting further this result-set
according to ROLL_NO will sort the rows with the same Age according to ROLL_NO in
descending order.

Assertions:

e When a constraint involves 2 (or) more tables, the table constraint mechanism is
sometimes hard and results may not come as expected.

e To cover such situation SQL supports the creation of assertions that are constraints
not associated with only one table.

e An assertion statement should ensure a certain condition will always exist in the
database. DBMS always checks the assertion whenever modifications are done in the
corresponding table.

e A data assertion is a query that looks for problems in a dataset. If the query returns
any rows then the assertion fails.

e Data assertions are defined this way because it’s much easier to look for problems
rather than the absence of them.

e It also means that assertion queries can themselves be used to quickly inspect the data
causing the assertion to fail - making it easy to diagnose and fix the problem.

Assertions

sqL customer_id.assert.sql if © row returned:

Assertion passed

check if customers contains null values
SELECT customer_id as customer_-d,
customer_name as customer_nams
FROM customers
WHERE customer_+id IS NULL
if >=1 row(s) returned:

Assertion failed X

V.RASHMI (Assistant Professor) PVPSIT IT 42

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Checking field values:
Example:

e Assume that there is a database.customers table containing information about
customers in the database.
e Some checks that we might want to verify on the table’s contents include:
The field email_address is always set
The field customer_type is one of “business” or “individual”
e The following simple query will return any rows violating these rules:
SELECT customer _id
FROM database.customers
WHERE email_address IS NULL
OR NOT customer_type IN (“business”, “individual™)
Checking for unique fields:
We may also want to run checks across more than one row.
Example: Verify that the customer _id field is unique.
A query like the following will return any duplicate customer_id values:
SELECT
customer _id,
SUM(1) AS count
FROM database.customers
GROUPBY 1
HAVING count > 1

Combinining multiple assertions into a single query:
We can combine all of the above into a single query to quickly find any customer_id value
violating one of our rules using UNION ALL:

SELECT customer_id, “missing_email” AS reason

FROM database.customers WHERE

email_address IS NULL

UNION ALL

SELECT customer_id, “invalid_customer_type” AS reason WHERE not customer_type
in (“business”, “individual”)

FROM database.customers

UNION ALL

SELECT customer_id, “duplicate_id” AS reason

FROM (SELECT customer_id, SUM(1) AS count FROM database.customers GROUP
BY 1)

WHERE count > 1

Trigoers:

e Atrigger is a database object that is associated with the table, it will be activated
when a defined action is executed for the table. In another way;

e Artrigger is a stored procedure in database which automatically invokes whenever a
special event in the database occurs.

V.RASHMI (Assistant Professor) PVPSIT IT 43

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

e For example, a trigger can be invoked when a row is inserted into a specified table or
when certain table columns are being updated.
e The trigger can be executed when we run the following statements:
1. INSERT
2. UPDATE
3. DELETE
e And it can be invoked before or after the event.
Syntax —
create trigger [trigger_name]
[before | after]
{insert | update |
delete} on [table_name]
[for each row]
[trigger_body]

Explanation of syntax for Trigger:

create trigger [trigger_name]:

Creates or replaces an existing trigger with the trigger_name.

[before | after]: This specifies when the trigger will be executed.

{insert | update | delete}: This specifies the DML operation.

on [table_name]: This specifies the name of the table associated with the trigger.
[for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for each
row being affected.

[trigger_body]: This provides the operation to be performed as trigger is fired
BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.
AFTER triggers run the trigger action after the triggering statement is run.

Example:

e Given Student Report Database, in which student marks assessment is recorded.

e Insuch schema, create a trigger so that the total and average of specified marks is
automatically inserted whenever a record is insert.

e Here, as trigger will invoke before record is inserted so, BEFORE Tag can be
used. Suppose the database Schema shown below is considered.

mysqgl> desc Student;

H— *—— — i —— e e — o S +— - ——— i — — F—rm— mr S — o o e +
| Field | Type | Mull | Key | Default | Extra |
i s B i G s = P T e e L D i +
+id	int(a)	™o	PRI	mNuULL	auto dincrement
mame	warchar({3@)	YESs		muLL	
subji1	didnt(2)	¥Es		muLL	
subg2	idnt(2)	vEsS		muLL	
subj3	int(2)	YEs		muLL	
total	4Ant(3)	¥EsS		muLL	
per	int(3)	¥Es		muLL	
i s B i G s = P T e e L D i +
7 rows in set (8.89 sec)

V.RASHMI (Assistant Professor) PVPSIT IT 44

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:

SQL Trigger to problem statement.
create trigger stud_marks
before INSERT on Student for each row set

Student.total = Student.subj1 + Student.subj2 + Student.subj3,
Student.per = Student.total * 60 / 100;

Above SQL statement will create a trigger in the student database in which whenever
subjects marks are entered, before inserting this data into the database, trigger will compute
those two values and insert with the entered values. i.e.,

mysgl» insert into Student wvalues(&, "ABCDE"™, 26, 26, 28, @,);
Query OK, 1 row affected (B.89 sec)

mvsgl> select * from Student;

1 row in set (8.868 sec)

In this way trigger can be creates and executed in the databases.

Views:

Creating Views:

We can create View using CREATE VIEW statement. A View can be created from a single
table or multiple tables.

Syntax:

CREATE VIEW view_name AS
SELECT columni, column2.....
FROM table_name

WHERE condition;

Syntax explaination:

view_name: Name for the View
table _name: Name of the table
condition: Condition to select rows

Let us see the data from the Sample Tables:
StudentDetails:

Durgapur

StudentMarks:

V.RASHMI (Assistant Professor) PVPSIT IT 45

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Suresh

Dhanraj

Examples for Creating Views:

I. Creating View from a single table:
In this example we will create a View named DetailsView from the table StudentDetails.
uery:

CREATE VIEW DetailsView AS
SELECT NAME, ADDRESS
FROM StudentDetails

WHERE S _ID < 5;

To see the data in the View, we can query the view in the same manner as we query a table.
SELECT * FROM DetailsView;

Ashish Durgapur
Dhanraj Bihar

Examples:
In this example, we will create a view named StudentNames from the table StudentDetails.

uery:

CREATE VIEW StudentNames AS
SELECT S_ID, NAME

FROM StudentDetails

ORDER BY NAME;

If we now query the view as,

SELECT * FROM StudentNames;
Output:

4 Dhanréj
3 Pratik

I1. Creating View from multiple tables:

V.RASHMI (Assistant Professor) PVPSIT IT 46

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In this example we will create a View named MarksView from two tables StudentDetails and
StudentMarks.

To create a View from multiple tables we can simply include multiple tables in the SELECT
statement.

uery:

CREATE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails. ADDRESS, StudentMarks.MARKS
FROM StudentDetails, StudentMarks

WHERE StudentDetails. NAME = StudentMarks.NAME;

To display data of View MarksView:
SELECT * FROM MarksView;

Output:

Pratik Delhi 80

Ram Rajasthan 85

DELETING VIEWS:
SQL allows us to delete an existing View. We can delete or drop a View using the DROP
statement.

Syntax:
DROP VIEW view_name;

view_name: Name of the View which we want to delete.
Example: if we want to delete the View MarksView, we can do this as:
DROP VIEW MarksView;
UPDATING VIEWS:
There are certain conditions needed to be satisfied to update a view. If any one of these
conditions is not met, then we will not be allowed to update the view.

e The SELECT statement which is used to create the view should not include GROUP
BY clause or ORDER BY clause.

e The SELECT statement should not have the DISTINCT keyword.

e The View should have all NOT NULL values.

e The view should not be created using nested queries or complex queries.
e The view should be created from a single table.

e If the view is created using multiple tables then we will not be allowed to update the
view.

We can use the CREATE OR REPLACE VIEW statement to add or remove fields from a view.
Syntax:

V.RASHMI (Assistant Professor) PVPSIT IT 47

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

CREATE OR REPLACE VIEW view_name AS
SELECT columni,coulmn2,..

FROM table_name

WHERE condition;

For example, if we want to update the view MarksView and add the field AGE to this View
from StudentMarks Table, we can do this as:

CREATE OR REPLACE VIEW MarksView AS

SELECT StudentDetails. NAME, StudentDetails. ADDRESS,
StudentMarks.MARKS, StudentMarks.AGE

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

If we fetch all the data from MarksView now as:

SELECT * FROM MarksView;
OQutput:

B

Ram Rajasthan 85

Inserting a row in a view:
We can insert a row in a View in a same way as we do in a table. We can use the INSERT
INTO statement of SQL to insert a row in a View.

Syntax:

INSERT INTO view_name(columnl, column2 , column3,..)
VALUES(valuel, value2, value3..);

view name: Name of the View

Example:
In the below example we will insert a new row in the View DetailsView which we have
created above in the example of “creating views from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)
VALUES(""Suresh™,""Gurgaon™’);

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

V.RASHMI (Assistant Professor) PVPSIT IT 48

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

OQutput:
~ NAME ADDRESS
. Harsh Kolkata
Ashish Durgapur
. Pratk Delhi
Dhanraj Bihar
. Suresh Gurgaon

Deleting a row from a View:

Deleting rows from a view is also as simple as deleting rows from a table. We can use the
DELETE statement of SQL to delete rows from a view.

Also deleting a row from a view first delete the row from the actual table and the change is
then reflected in the view.

Syntax:

DELETE FROM view_name
WHERE condition;

view name: Name of view from where we want to delete rows
condition: Condition to select rows_Example:

In this example we will delete the last row from the view DetailsView which we just added in
the above example of inserting rows.

DELETE FROM DetailsView
WHERE NAME=""Suresh";

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:
Ashish Durgapur
Dhanraj Bihar

WITH CHECK OPTION:
v
The WITH CHECK OPTION clause in SQL is a very useful clause for views.

v
It is applicable to a updatable view. If the view is not updatable, then there is no meaning of
including this clause in the CREATE VIEW statement.

v
The WITH CHECK OPTION clause is used to prevent the insertion of rows in the view
where the condition in the WHERE clause in CREATE VIEW statement is not satisfied.

v
If we have used the WITH CHECK OPTION clause in the CREATE VIEW
statement, and if the UPDATE or INSERT clause does not satisfy the conditions then
they will return an error.

Example:
In the below example we are creating a View SampleView from StudentDetails Table with

V.RASHMI (Assistant Professor) PVPSIT IT 49

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

WITH CHECK OPTION clause.
CREATE VIEW SampleView AS
SELECT S_ID, NAME

FROM StudentDetails

WHERE NAME IS NOT NULL

WITH CHECK OPTION;

In this View if we now try to insert a new row with null value in the NAME column then it
will give an error because the view is created with the condition for NAME column as NOT
NULL.

For example,though the View is updatable but then also the below query for this View is not
valid:

INSERT INTO SampleView(S_ID)
VALUES(6);

NOTE: The default value of NAME column is null.

3. Formal Relational Lanquaqges:

3.1 Introduction

Relational algebra is the basic set of operations for the relational model. These operations
enable a user to specify basic retrieval requests as relational algebra expressions. The result
of an operation is a new relation, which may have been formed from one or more input
relations. The relational algebra is very important for several reasons

e First, it provides a formal foundation for relational model operations.

e Second, and perhaps more important, it is used as a basis for implementing and
optimizing queries in the query processing and optimization modules that are integral
parts of relational database management systems (RDBMSSs)

e Third, some of its concepts are incorporated into the SQL standard query language for
RDBMSs

Relation Algebra is a procedural language consisting of a set of operations that take one or
two relations as input and produce a new relation as their result. Six basic operators are:

select: &

project: []

union:

set difference: —
Cartesian product: X

d =

oy Lh s e

rename: O

2.2 Unary Relational Operations: SELECT and PROJECT

2.2.1 The SELECT Operation

The SELECT operation denoted by (sigma) is used to select a subset of the tuples from a
relation based on a selection condition. The selection condition acts as a filter that keeps only

V.RASHMI (Assistant Professor) PVPSIT IT 50

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

those tuples that satisfy a qualifying condition. Alternatively, we can consider the SELECT
operation to restrict the tuples in a relation to only those tuples that satisfy the condition.

The SELECT operation can also be visualized as a horizontal partition of the relation into
two sets of tuples those tuples that satisfy the condition and are selected, and those tuples that
do not satisfy the condition and are discarded.

In general, the select operation is denoted by
<select condition> (R)
where,

- the symbol is used to denote the select operator
- the selection condition is a Boolean (conditional) expression specified on the
attributes of relation R
- tuples that make the condition true are selected
e appear from the result of the operation

- tuples that make the condition false are filtered out
e discarded from the result of the operation

The Boolean expression specified in <selection condition> is made up of a number of clauses
of the form:

<attribute name> <comparison op> <constant value> or
<attribute name> <comparison op> <attribute name>

where
<attribute name> is the name of an attribute of R,
<comparision op> is one of the operators {=, <, >, <, >, #}
<constant value> is a constant value from the attribute domain

Clauses can be connected by the standard Boolean operators and, or, and not to form a
general selection condition

e The select operation selects tuples that satisfy a given predicate.
e Notation: p (1)
p is called the selection predicate
e Example: select those tuples of the instructor relation where the instructor is
in the “Physics” department.
e Query:
dept_name="Physics” (INStructor)
e Result:

V.RASHMI (Assistant Professor) PVPSIT IT 51

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

D name dept_name | salary
22222 Einstein Physics 95000
33456 | Gold Physics 87000

Examples:
1) Select the EMPLOYEE tuples whose department number is 4.
6ono=4 (EMPLOYEE)
2) Select the employee tuples whose salary is greater than $30,000.
G SALARY >30,000 (EMPLOYEE)

3) Select the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000
G (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOY EE)

The result of a SELECT operation can be determined as follows:

e The <selection condition> is applied independently to each individual tuple tin R

e |f the condition evaluates to TRUE, then tuple t is selected. All the selected tuples
appear in the result of the SELECT operation

e The Boolean conditions AND, OR, and NOT have their normal interpretation, as
follows:
- (condl AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; otherwise, it is

FALSE.

- (condl OR cond?2) is TRUE if either (condl) or (cond2) or both are TRUE; otherwise,
itis

FALSE.
- (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. The degree of the
relation resulting from a SELECT operation is the same as the degree of R. The number of
tuples in the resulting relation is always less than or equal to the number of tuples in R. That
is,

|6 c(R)| < for any condition C

The fraction of tuples selected by a selection condition is referred to as the selectivity of the
condition.

The SELECT operation is commutative; that is,
G <cond1> (6 <cond2>(R))= 6 <cond2> (G<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order.we can always combine a
cascade (or sequence) of SELECT operations into a single SELECT operation with a
conjunctive (AND) condition; that is,

o<cond1>(e<con d2>(_(g<condn>(R)).)=s<cond1>AND<cond2>AND ... AND<condn>(R)
V.RASHMI (Assistant Professor) PVPSIT IT 52

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In SQL, the SELECT condition is specified in the WHERE clause of a query.For example,
the following operation:

6Dno=4 AND Salary>25000 (EMPLOYEE)
would do the following SQL query:
SELECT * FROM EMPLOYEE WHERE Dno=4 AND Salary>25000;

2.2.2 The PROJECT Operation

The PROJECT operation denoted by selects certain columns from the table and discards the
other columns Used when we are interested in only certain attributes of a relation. The result
of the PROJECT operation can be visualized as a vertical partition of the relation into two
relations:

- one has the needed columns (attributes) and contains the result of the operation
- the other contains the discarded columns

The general form of the PROJECT operation is
<attribute list>(R)

where

I (pi) - symbol used to represent the PROJECT operation,

<attributelist> - desired sublist of attributes from the attributes of relation R.

The result of the PROJECT operation has only the attributes specified in <attribute list> in
the same order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>

e Project Operation is a unary operation that returns its argument relation, with
certain attributes left out.
e Notation: ara2a3...ak (r)
where Al, A2, ..., Ak are attribute names and r is a relation name.
e The result is defined as the relation of k columns obtained by erasing the columns that
are not listed.
e Duplicate rows removed from result, since relations are sets.

Example: eliminate the dept_name attribute of instructor
Query: ID, name, salary (instructor)

Result:

ID nare salary
10101 Srinivasan &S000
12121 Wu 90000
15151 Mozart 40000
22222 Einstein 95000
32343 El Said &OOO0
33456 Gold B7000
45565 Katz 75000
58583 Califieri 62000
76543 Singh BOOOO
76766 Crick 7 2000
B3821 Brandt 92000
9R345 Kim ROOOO

V.RASHMI (Assistant Professor) PVPSIT IT 53

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:

1) To list each employee’s first and last name and salary we can use the PROJECT
operation as follows:
TLname, Fname, Salary(EMPLOYEE)
If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The result of the PROJECT operation is a set of distinct tuples, and hence a
valid relation. This is known as duplicate elimination.For example, consider the
following PROJECT operation:

Tgender, salary(EMPLOYEE)

Lname Fname Salary
Smith John 30000
Wong Frankin | 40000
Zelaya Abcia 25000
Wallace | Jennifer | 43000
Marayan | Ramesh | 38000
Engksh Joyce 25000
Jabbar Ahmad 25000
Borg James 55000

The tuple <’F’, 25000> appears only once in the resulting relation even though
this combination of values appears twice in the EMPLOYEE relation.

The number of tuples in a relation resulting from a PROJECT operation is always less
than or equal to the number of tuples in R. Commutativity does not hold on PROJECT

T<listL> (n<Iist2>(R)):TC<Iist1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is an
Incorrect expression.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

Mgender, salary(EMPLOY EE)
would correspond to the following SQL query:
SELECT DISTINCT gender, Salary FROM
EMPLOYEE; Composition of Relational Operations

e The result of a relational-algebra operation is relation and therefore of relational-

algebra operations can be composed together into a relational-algebra expression.

e Consider the query -- Find the names of all instructors in the Physics department.
name(_ dept_name =“Physics” (instructor))

e Instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

V.RASHMI (Assistant Professor) PVPSIT IT 54

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.2.3 Sequences of Operations and the RENAME Operation
e The results of relational-algebra expressions do not have a name that we can use
to refer to them. The rename operator, ,is provided for that purpose
e The expression:
x (E)
returns the result of expression E under the name x
e Another form of the rename operation:
x(ALA2, .. An) (E)

For most queries, we need to apply several relational algebra operations one after the other.
Either we can write the operations as a single relational algebra expression by nesting the
operations, or we can apply one operation at a time and create intermediate result relations. In
the latter case, we must give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who work in
department number 5, we must apply a SELECT and a PROJECT operation. We can write a
single relational algebra expression, also known as an in-line expression, as follows:

TTFname, Lname, Salary(O' DnozS(EMPLOYEE))

Alternatively, we can explicitly show the sequence of operations, giving a name to each
intermediate relation, as follows:

DEP5 EMPS <« pno=s(EMPLOYEE)
RESULT <« 7rname, Lname, salary(DEP5_EMPS)

We can also use this technique to rename the attributes in the intermediate and result relations.
To rename the attributes in a relation, we simply list the new attribute names in parentheses.

TEMP. _6Dno=5(EMPLOYEE)

R(First_name, Last_name, Salary)— mTrname, Lname, salary(TEMP)

TEMP
Frname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
John B | Smith 123456788 | 19850109 | 731 Fondren, Houston, TX | M | 30000 |333445555 | &
Frankiin T | Wong | 333445555 | 1955-12-08 | 638 Voss, Houston,TX M | 40000 |BBBBES55S | 5
Ramesh | K | MNarayan | 666884444 | 18620815 | 875 Fwe Oak HumbleTX | M | 38000 333445555 | §
Joyce A | English | 453453453 | 1072-07-31 | 5631 Rice, Houston, TX | F | 25000 |333445555 | &
R
Frst_name | Last name | Salary
John Smith 30000

Frankin | Wong | 40000
Ramesh Marayan | 38000
Jayee Enghsh 25000

V.RASHMI (Assistant Professor) PVPSIT IT 55

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

If no renaming is applied, the names of the attributes in the resulting relation of a SELECT
operation are the same as those in the original relation and in the same order.For a PROJECT
operation with no renaming, the resulting relation has the same attribute names as those in the
projection list and in the same order in which they appear in the list.

We can also define a formal RENAME operation which can rename either the relation name
or the attribute names, or both as a unary operator.

The general RENAME operation when applied to a relation R of degree n is denoted by any
of the following three forms:

1. psisrsz ol R) p (rho)— RENAME operator
2. pS(R) S — new relation name
3. pinLm By (R Bi.Bs,.....Bg- new attmbute names

The first expression renames both the relation and its attributes. Second renames the relation
only and the third renames the attributes only.If the attributes of R are (A1, A2, ..., An) in that
order, then each Ai is renamed as Bi.

Renaming in SQL is accomplished by aliasing using AS, as in the following example:
SELECT E.Fname AS First_name,
E.Lname AS Last_name,
E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

3.1 Relational Algebra Operations from Set Theory:

3.1.1 The UNION, INTERSECTION and MINUS Operations
e UNION: The result of this operation, denoted by R S, is a relation that includes all
tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated.
e INTERSECTION: The result of this operation, denoted by R S, is a relation that
includes all tuples that are in both R and S.

e SET DIFFERENCE (or MINUS): The result of this operation, denoted by R S, is a
relation that includes all tuples that are in R but not in S.

Example: Consider the the following two relations: STUDENT & INSTRUCTOR

V.RASHMI (Assistant Professor) PVPSIT IT 56

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

STUDENT INSTRUCTOR
Fn Ln Fname Lname
Susan Yao John Smith
Ramesh | Shah Ricarde | Browne
Johniny Kohler Susan a0
Barbara | Jones Francis | Johnson
Amy Ford Ramesh | Shah
Jimmy Wang
Emest Gilbert
STUDENT v INSTRUCTOR STUDENT N INSTRUCTOR
Fn Ln
Susan Yao
Ramesh | Shah
Johnny Kohler Fﬂ Ln
Barbara | Jones SUS&D Yao
Amy Ford
Jimmy Wang Ramesh | Shah
Emest Gilbert
John Smith
Ricardo | Browne
Francis | Johnson
STUDENT-INSTRUCTOR INSTRUCTOR-STUDENT
Fn Ln
Johnny | Kohler Fheme Lrne
Barbara | Jones John Smith
Amy Ford Ricardo | Browne
Jimmy | Wang Francis | Johnson
Emest Gilbert

Example: To retrieve the Social Security numbers of all employees who either
work in department 5 or directly supervise an employee who works in
department 5.

DEPT5_EMP<« 6 pno=5s(EMPLOYEE)
RESULT1« ssn(DEPT5_EMPS)
RESULT2(Ssn) < super_ssn(DEPT5_EMPS)

RESULT« RESULT1 U RESULT2

V.RASHMI (Assistant Professor) PVPSIT IT 57

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2
EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Lende' Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M (30000 |333445555 | 5
Franklin | T Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 |888665555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 |3321 Castle, Spring, TX F]25000 (987654321 4
Jennifer | S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 |888665555 | 4
Ramesh | K [Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 333445555 | 5
Joyce A | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX | F |25000 |333445555 | 5
Ahmad Vv Jabbar | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX | M |25000 [987654321 4
James E |Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M |55000 |NULL 1
RESULT1 RESULT2 RESULT
Ssn Ssn Ssn
123456789] 333445555 123456789
333445555 888665555 333445555
| 666884444 | 666884444
453453453 | 453453453
| 888665555

Single relational algebra expression:
Re sult—mss (6ono=s (EMPLOYEE)) Ut ssuper_ssn (6Dno=s (EMPLOYEE))
UNION, INTERSECTION and SET DIFFERENCE are binary operations; that is, each is
applied to two sets (of tuples). When these operations are adapted to relational databases, the
two relations on which any of these three operations are applied must have the same type of

tuples; this condition has been called union compatibility or type compatibility.

Two relations R(AL, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible (or
type compatible) if they have the same degree n and if dom(Ai) = dom(Bi) for 1 <i < n.
This means that the two relations have the same number of attributes and each
corresponding pair of attributes has the same domain.

Both UNION and INTERSECTION are commutative operations; that is,
RUuS=SURandRNS=SNR

Both UNION and INTERSECTION can be treated as n-ary operations applicable to any
number of relations because both are also associative operations; that is,

RUSUT)=(RUS)UTand(RNS)NT=RN((SNT)
The MINUS operation is not commutative; that is,

in general,

V.RASHMI (Assistant Professor) PVPSIT IT 58

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

R-S#S-R

INTERSECTION can be expressed in terms of union and set difference as follows,
RNS=(RUS)-(R-S))-(S—-R)

In SQL, there are three operations UNION, INTERSECT, and EXCEPT that correspond
to the set operations

Union Operation:

e The union operation allows us to combine two relations

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: 2" column of r
deals with the same type of values as does the 2" column of S)
Result of:
Meourse_id (T semester=“Fail * A year=2017 (S€CtiON)) U

ncourse_id (O semester= “Spring " A year=2018 (section))

course_id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Set-Intersection Operation:

e The set-intersection operation allows us to find tuples that are in both the input
relations.

e Assume:
r, s have the same arity
attributes of r and s are compatible

e Example: Find the set of all courses taught in both the Fall 2017 and the Spring
2018 semesters.

T course_id(semester="Fall"Ayear=2017(section))N TMcourse_id (semester=“Spring” A year=2018 (section))

e Result

course id
CS-101

Set Difference (Minus) Operation:

V.RASHMI (Assistant Professor) PVPSIT IT 59

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

e The set-difference operation allows us to find tuples that are in one relation but
are not in another.

e Notation: r—s

e Set differences must be taken between compatible relations.
r and s must have the same arity
attribute domains of r and s must be compatible

e Example: to find all courses taught in the Fall 2017 semester, but not in the Spring
2018 . semester

. Resdlt.

course id
C8-347
PHY-101

Equivalent Queries

e There is more than one way to write a query in relational algebra.

e Example: Find information about courses taught by instructors in the Physics
department with salary greater than 90,000

Query 1

Gept_name="Physics” A

Query 2 salary > 90,000 (instructor)
dept_name=“Physics” ()
salary > 90.000 (instructor))
The two queries are not identical; they are, however, equivalent -- they give the
same result on any database.

3.1.2 The CARTESIAN PRODUCT (CROSS PRODUCT)
Operation Cartesian Product Operation in Relational Algebra

e Applying CARTESIAN PRODUCT on two relations that is on two sets of tuples, it
will take every tuple one by one from the left set(relation) and will pair it up with all
the tuples in the right set(relation).

e So, the CROSS PRODUCT of two relation A(R1, R2, R3, ..., Rp) with degree p, and
B(S1, S2, S3, ..., Sn) with degree n, is a relation C(R1, R2, R3, ..., Rp, S1, S2, S3, ...,
Sn) with degree p + n attributes.

e Notation: A X S
where A and S are the relations,
the symbol <X’ is used to denote the CROSS PRODUCT operator.

e Example:

Consider two relations STUDENT(SNO, FNAME, LNAME) and
DETAIL(ROLLNO, AGE) below:

SNO FNAME LNAME ROLLNO AGE

1 Albert Singh 5 18
2 Nora Fatehi 9 21

V.RASHMI (Assistant Professor) PVPSIT IT 60

DATABASE MANAGEMENT SYSTEMS

DETAIL: STUDENT X DETAILS

SNO FNAME LNAME ROLLNO AGE

[T G T

Albert
Albert
Nora
Nora

Singh
Singh
Fatehi
Fatehi

5
9
5

9

18
21
18
21

On applying CROSS PRODUCT on STUDENT and

PVP20

UNIT-2

So the number of tuples in the resulting relation on performing CROSS

PRODUCT is 2*2 = 4.

The CARTESIAN PRODUCT operation also known as CROSS PRODUCT or CROSS JOIN
denoted by x is a binary set operation, but the relations on which it is applied do not have to
be union compatible. This set operation produces a new element by combining every member

(tuple) from one relation (set) with every member (tuple) from the other relation (set).

In general, the result of R(AL, A2, ..., An) x S(B1, B2, ..., Bm) is a relation Q with degree
n+m attributes Q(Al, A2, ..., An, B1, B2, ..., Bm), in that order. The resulting relation Q has
one tuple for each combination of tuples one from R and one from S. Hence, if R has nR
tuples (denoted as |R| = nR), and S has nS tuples, then R x S will have nR * nS tuples

Example: Suppose that we want to retrieve a list of names of each employee’s dependents.

FEMALE_EMPS « Ggenger—+(EMPLOYEE)
EMPNAMES « Trname, Luame. sa(FEMALE_EMPS)
EMP_DEPENDENTS «— EMPNAMES x DEPENDENT
ACTUAL_DEPENDENTS « Gsu-£sso(EMP_DEPENDENTS)

RESULT « Ttrname, Luame, Dependent_mame (AC TUAL DEPENDENTS)

FEMALE_EMPS

Fname |Minit |

Lname

Ssn

Bdate

Address

Salary

Super_ssn

Dno

Alicia J

Zelaya

999887777

1968-07-19

3321Castle, Spiing, TX

25000

887554321

S

Jonnifer

Wallace

987654321

1941.0820

291Berry, Ballaire, TX

43000

888665555 4

A

Joyce

English

453453453

1972-07-31

5631 Rice, Houston, TX

25000

333445555| 5

EMPNAMES

Fname

Lname

Ssn

Alicia

Zelaya

999887777

Jennifer

Wallace

987654321

Joyce

English

453453453

RESULT

Fname

Lname

Dependent_name

Jennifer

Wallace

Abner

V.RASHMI (Assistant Professor)

PVPSIT IT

61

DATABASE MANAGEMENT SYSTEMS

EMP_DEPENDENTS

PVP20

UNIT-2

Fname | Lname Sen Esen Dependent_nama | Sex Bdate
Alicia | Zelaya | 999BB7777 | 333445555 Alica F | 1988-04-05
Alicia | Zelaya | 999BB7777 | 333445555 Thaodare M | 1983-10-25
Alicia | Zcleya | 999887777 | 933445555 | oy F | 1958-0503
Alicia | Zelaya | 999887777 | 887654321 Abrer M | 1542-02.28
Alicia |Zolaya | 990887777 | 123455780 Michael M | 1088-01.04
Alicia | Zolaya 990887777 | 123458780 Alice F 1988-12-30
Alicia | Zelaya | WUUBHZ/// | 12345574 Ehizabeth F | 19820505
Jennifer | Wallace | 987654321 | 333445555 Alice F | 1986-D4-05
Jennifer | Wallace | 987654321 | 333445555 Theodore M | 1983-10-25
Jennfer | Wallace | 987664321 | 333445655 Joy F | 1558-05-03
Jonnfor | Wallace | 9876654321 | 687654321 Abner M | 1942-02-28
Jannder | Wallace | 987654321 | 123455780 Michael M | 19288-01-04
Jennffer | Wallace | 987654321 | 123455732 Alica F | 1988-12-:30
Jennifer | Wallace | 987654321 | 123455788 Flizabeth F | 19570505
Joyce | Engiish | 453453453 | 333445995 Alice r | 1986-04-05
Joyce | English | 4534534653 | 333445566 Theodore M | 19831026
Joyce | English | 463453453 | 333445565 Joy F | 19580503
Joyce | Engiish | 453453453 | ©87654321 Abner M | 1042-02-28
Joyce | English | 453453453 | 123458783 Michael M | 1988-01-04
Joyce | English | 463453453 | 123456789 Alice F | 19881230
Joyce |Englich | 463453453 | 123455780 Eizabeth F | 168705056

ACTUAL DEPENDENTS

Fname ILname Ssn Essn Dependent_name | Sex Bdate

Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28

The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations.
We can SELECT related tuples only from the two relations by specifying an appropriate

selection condition after the Cartesian product.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in

joined tables.

Cartesian Product Operation in Relational Algebra

e Applying CARTESIAN PRODUCT on two relations that is on two sets of tuples, it
will take every tuple one by one from the left set (relation) and will pair it up with all
the tuples in the right set (relation).

e So, the CROSS PRODUCT of two relation A(R1, R2, R3, ..., Rp) with degree p, and
B(S1, S2, S3, ..., Sn) with degree n, is a relation C(R1, R2, R3, ..., Rp, S1, S2, S3, ...,
Sn) with degree p + n attributes.

e Notation: A X S
where A and S are the relations,
the symbol <X’ is used to denote the CROSS PRODUCT operator.

e Example:

Consider two relations STUDENT(SNO, FNAME, LNAME) and
DETAIL(ROLLNO, AGE) below:

V.RASHMI (Assistant Professor)

PVPSIT IT

62

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

SNO FNAME LNAME ROLLNO AGE

1 Albert Singh 5 18
2 Nora Fatehi 9 21

On applying CROSS PRODUCT on STUDENT and DETAIL:
STUDENT X DETAILS

SNO FNAME LNAME ROLLNO AGE

1 Albert Singh 5 18
1 Albert Singh 9 21
2 Nora Fatehi 5 18
2 Nora Fatehi 9 21

So the number of tuples in the resulting relation on performing CROSS
PRODUCT is 2*2 = 4,

3.5 Binary Relational Operations: JOIN and DIVISION:
3.5.1 The JOIN Operation

e JOIN Operation: Join in DBMS is a binary operation which allows you to combine
join product and selection in one single statement.

e The goal of creating a join condition is that it helps you to combine the data from two
or more DBMS tables.

e The tables in DBMS are associated using the primary key and foreign keys.

e Types of Join
4[SQL Join }—

Non-Equi (Theta)
Join
Left Quter Join
A\ J Y 1 Y
Equi Join Inner Join ‘ ‘ Self Join ’ ‘ Cross Join Outer Join Right Outer Join

Full Outer Join

SELECT *
FRONM TableA a
LEFT JOIN TableB b

ON a.Key = b.Key

SELECT *

FRONM TableA a

LEFT JOIN TableB b
ON a.Key = b.Key
WHERE b.Key IS NULL

SELECT *
FROM TableA a

SELECT ~

FROM TableA a

FULL OUTER JOIN TableB b
ON a.Key =b.Key

SELECT *

FROM TableA a

FULL OUTER JOIN TableB b
ON a.Key = b.Key

WHERE a.Key IS NULL

OR b.Key IS NULL

RIGHT JOIN TableB b
ON a.Key = b.Key

SELECT *

FRONM TableA a
RIGHT JOIN TableB b
ON a.Key = b.Key
WHERE a.Key IS NULL

SELECT *

FROM TableA a
INNER JOIN TableB b
ON a.Key = b.Key

V.RASHMI (Assistant Professor) PVPSIT IT 63

DATABASE MANAGEMENT SYSTEMS PVP20

1. Natural Join:

A natural join is the set of tuples of all combinations in R and S that are equal on their common attribute names. It is denoted by ta.

Example: Let's use the EMPLOYEE table and SALARY table:

Input: [] EMP_NAME, SALARY (EMPLOYEE b SALARY)

Output:

EMP_NAME SALARY
Stephan 50000
Jack 30000

Harry 25000

2. Outer Join:

UNIT-2

The outer join operation is an extension of the join operation. It is used to deal with missing

information.

Example:

EMPLOYEE FACT_WORKERS
ENMP_NAME STREET CITY EMP_NAME BRANCH SALARY
Ram Civil line Mumbai Ram Infosys 10000

Input: (EMPLOYEE x FACT_WORKERS) R g
Ravi M.G. Street Delhi Kuber HCL 30000

OUIPUt Nehru nagar Hyderabad Hari TCS 50000

EMP NAME STREET CITY BRANCH
Ram Civil line humbai nfosys
Shyam Park street Kolkata Wipro

Hari Mehru nagar Hyderabad TCS

An outer join is basically of three types:

a) Left outer join
b) Right outer join
c) Full outer join

20000

0000

a) Left Outer Join: Left outer join contains the set of tuples of all combinations in R

and S that are equal on their common attribute names.
¢ Inthe left outer join, tuples in R have no matching tuples in S.

Itis denoted by >

. Example: Using the above EMPLOYEE table and FACT_WORKERS table.

Input: EMPLOYEE >« FACT_WORKERS

e Output:

V.RASHMI (Assistant Professor) PVPSIT IT

64

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

EMP_NANME STREET CITY BRANCH SALARY
Ram Civil line Mumbai nfosys 10000
Shyam Park street Kolkata Wipro 20000
Hari Mehru strest Hyderabad TCS 50000
Ravi M.G. Street Delhi MULL MULL

b) Right outer join: Right outer join contains the set of tuples of all combinations in R
and S that are equal on their common attribute names.
* Inright outer join, tuples in S have no matching tuples in R.

Itis denoted by i<

e Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input: EMPLOYEE >t FACT_WORKERS

e Output:
EMP _NAME BRANCH SALARY STREET CITY
Ram Infosys 10000 Civil line Mumbai
Shyam Wipro 20000 Fark strest Kolkata
Hari TCs 50000 Mehru strest Hyderabad
Kuber HCL 20000 MULL MULL

c) FEull outer join: Full outer join is like a left or right join except that it contains all
rows from both tables.

e In full outer join, tuples in R that have no matching tuples in S and tuples in S that
have no matching tuples in R in their common attribute name.

Itis denoted by >

* Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input: EMPLOYEE > FACT_WORKERS

e Output:
EMP NAME STREET CITY BRANCH SALARY
Ram Civil line Mumbai nfosys 10000
Shyam Park strest Kolkata Wipro 20000
Hari Mehru street Hyderabad TCS 50000
Ravi M.G. Street Delhi MNULL MNULL
Kuber NULL MULL HCL 30000

3) Equi join: It is also known as an inner join. It is the most common join. It is based on
matched data as per the equality condition. The equi join uses the comparison operator(=).

Example:

V.RASHMI (Assistant Professor) PVPSIT IT 65

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

CUSTOMER RELATION PRODUCT
CLASS_ID NANE PRODUCT_ID CITY
Input: CUSTOMER-~ PRODUCT ! Deii
OUtpUt: Harry 2 Mumbai
CLASS ID NAME PRODUCT _ID CITY
1 lohn 1 Delhi
& Harry 2 mMumbai
2 Harry 3 Moida

The JOIN operation, denoted by 9 is used to combine related tuples from two relations
into single longer tuples. It allows us to process relationships among relations.The general
form of a JOIN operation on two relations R(Al, A2, ..., An) and S(B1, B2, ..., Bm) is

R *.<join condition>S
Example: Retrieve the name of the manager of each department.

To get the manager’s name, we need to combine each department tuple with the employee
tuple whose Ssn value matches the Mgr_ssn value in the department tuple

DEPT_MGR <~ DEPARTMENT < My somsiion EMPLOYEE
REBULY € Rp e 4o Frinin DEPT_MGR)
DEPT_MGR
Dname Dnumber Mgr_ssn oo Fname | Minit | Lname Ssn
Research 5 333445555 Franklin T Wong 333445555
Administration 4 987654321 Jennifer S Wallace | 987654321
Headquarters 1 888665555 James E Borg 888665555

The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An,B1, B2, ..., Bm
in that order. Q has one tuple for each combination of tuples one from R and one from S
whenever the combination satisfies the join condition. This is the main difference between
CARTESIAN PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join
condition appear in the result, whereas in the CARTESIAN PRODUCT all combinations of
tuples are included in the result. The join condition is specified on attributes from the two
relations R and S and is evaluated for each combination of tuples.

Each tuple combination for which the join condition evaluates to TRUE is included in the
resulting relation Q as a single combined tuple. A general join condition is of the form

<condition> AND <condition> AND...AND <condition>

V.RASHMI (Assistant Professor) PVPSIT IT 66

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

where each <condition> is of the form Ai Bj, Ai is an attribute of R, B is an attribute of S, Ai
and Bj have the same domain, and (theta) is one of the comparision operators {=, <, >, <, >,
#}. A JOIN operation with such a general join condition is called as THETA JOIN. Tuples
whose join attributes are NULL or for which the join condition is FALSE do not appear in the
result.

3.5.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons only.
Such a JOIN, where the only comparison operator used is =, is called an EQUIJOIN.In the
result of an EQUIJOIN we always have one or more pairs of attributes that have identical
values in every tuple.

For example the values of the attributes Mgr_ssn and Ssn are identical in every tuple of
DEPT_MGR (the EQUIJOIN result) because the equality join condition specified on these
two attributes requires the values to be identical in every tuple in the result.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair
of join attributes) have the same name in both relations. If this is not the case, a renaming
operation is applied first. Suppose we want to combine each PROJECT tuple with the
DEPARTMENT tuple that controls the project.first we rename the Dnumber attribute of
DEPARTMENT to Dnum so that it has the same name as the Dnum attribute in PROJECT
and then we apply NATURAL JOIN:

PROJ DEPT «— PROJECT * (Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)
The same query can be done in two steps by creating an intermediate table DEPT as follows:
DE PT —P(pname, bnum, Mgr_ssn,Mgr_start_date)(DEPARTMENT)
PROJ_DEPT — PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation, because it
is the only attribute with the same name in both relations.

PROJ_DEPT

[Prame Proumber | Plocation Dnum Dname Mgr_ssn Mgr_start_date |
ProductX 1 Bellaire 5 Research 333445555 1888-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
Product? 3 Houston 6 Research 333445555 10B8-05-22
Computerzation 10 Stafford 4 Administration | 987654321 1965-01-01
Reorganization 20 Houston 1 Headguarters | BBBBE5555 1981-06-19

 Newbenefits | 30 | Staflord 4 | Administration | 887654321 | 1995-01-01

If the attributes on which the natural join is specified already have the same names in both
relations, renaming is unnecessary. For example, to apply a natural join on the Dnumber
attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS «— DEPARTMENT * DEPT_LOCATIONS

V.RASHMI (Assistant Professor) PVPSIT IT 67

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2
DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location]
Headquarters 1 888865555 1681-08-19 Houston
. Administration 4 987654321 1995-01-01 Stafford
| Research 5 333445555 19B8-05-22 Bellaire
Ressarch 5 3334455565 1988-05-22 Sugarand
| Research 5 333445555 1088-05-22 Houston

In general, the join condition for NATURAL JOIN is constructed by equating each pair of
join attributes that have the same name in the two relations and combining these conditions
with AND. If no combination of tuples satisfies the join condition, the result of a JOIN is an
empty relation with zero tuples.

A more general, but nonstandard definition for NATURAL JOIN is

QR .. 8
. | sSlimd %)8 <Chisi

where,
<listl> : list of i attributes from R,
<list2> : list of i attributes from S

The lists are used to form equality comparison conditions between pairs of corresponding
attributes and then the conditions are then ANDed together. Only the list corresponding to
attributes of the first relation R <list1> is kept in the result Q.

In general, if R has nR tuples and S has nS tuples, the result of a JOIN operation R %< <join
condition> S will have between zero and nR * nS tuples. The expected size of the join result
divided by the maximum size nR * nS leads to a ratio called join selectivity, which is a
property of each join condition. If there is no join condition, all combinations of tuples
qualify and the JOIN degenerates into a CARTESIAN PRODUCT, also called CROSS
PRODUCT or CROSS JOIN.

A single JOIN operation is used to combine data from two relations so that related
information can be presented in a single table. These operations are also known as inner
joins. Informally, an inner join is a type of match and combine operation defined formally as
a combination of CARTESIAN PRODUCT and SELECTION. The NATURAL JOIN or
EQUIJOIN operation can also be specified among multiple tables, leading to an n-way join.
For example, consider the following three-way join:

IPROBELT &= Pieics

i MPTMEMT R B s P LOYEES

B e

This combines each project tuple with its controlling department tuple into a single tuple, and
then combines that tuple with an employee tuple that is the department manager. The net
result is a consolidated relation in which each tuple contains this project-department-manager
combined information.

In SQL, JOIN can be realized in several different ways

V.RASHMI (Assistant Professor) PVPSIT IT 68

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

- The first method is to specify the <join conditions> in the WHERE clause, along with
any other selection conditions.

- The second way is to use a nested relation

- Another way is to use the concept of joined tables

3.5.3 A Complete Set of Relational Algebra Operations

The set of relational algebra operations 7. = Y. ».— "} is a complete set; that is, any of the
other original relational algebra operations can be expressed as a sequence of operations from
this set. For example, the INTERSECTION operation can be expressed by using UNION and
MINUS as follows:

RMNFs{RUS=({R-5u{f=RY)

As another example, a JOIN operation can be specified as a CARTESIAN PRODUCT
followed by a SELECT operation,

'H 2 =20 il "'_ o T MR DRI IH : ﬁl
Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN
operations are also not strictly necessary for the expressive power of the relational algebra.

3.5.4 The DIVISION Operation
e Division operation: The division operator is used for queries which involve the “all’.
R1 + R2 =tuples of R1 associated with all tuples of R2.
e Example: Retrieve the name of the subject that is taught in all courses.

Name Course

System Btech

Database Mtech

Database Btech

Algebra Btech

Course

Btech

Btech

Name

database

V.RASHMI (Assistant Professor) PVPSIT IT 69

DATABASE MANAGEMENT SYSTEMS

The expression:
Smith «— IT Pno(G Ename = “john smith’ (employee * works on Pno=Eno))

Consider the Employee table given below —

Name
John 123
Smith 123
A 121
Works on the following —
Eno Pno

123 P1

123 P2

The result is as follows

123

PVP20

Eno
P1
P2
P3
Pname
Market
Sales
Eno

UNIT-2

Pno

The DIVISION operation, denoted by +, is useful for a special kind of query that sometimes
occurs in database applications. An example is Retrieve the names of employees who work
on all the projects that ‘John Smith’ works on. To express this query using the DIVISION
operation, proceed as follows.

V.RASHMI (Assistant Professor)

First, retrieve the list of project numbers that’John Smith’ works on in the

intermediate relation SMITH_PNOS:

SSN_PNOS o mp_ g, (WORKS_ON)

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee

relation SSN_PNOS:

SMITH « OFname="Tohn’ AND Lnames="Smith (EMPLOYEE)

SMITH_PNOS « xp, (WORKS_ON > o o SMITH)

whose Ssn is Essn works on the project whose number is Pno in the intermediate

Finally, apply the DIVISION operation to the two relations, which gives the desired

employees’ Social Security numbers:

SSNS(Ssn) < SSN_PNOS + SMITH_PNOS
RESULT ¢ Rferns Loamel SSNS ¥ EMPLOYEE)

(&)

SHTES4321
680655500

SSN PNOS
123456709 1
123456780 | 2
566834444 | 3
453453433 | 1
453453433 | 2
|3334e0606 | 2
333440000 | 3
| 383425656 | 10
| 232225656 | 20
S00887777 | 30
‘wosEaTI7 | 1o
GETEE7UE7 | 10
caroa7oe7 | 30
ca7e54321 | 30
2o
| 20

PVPSIT

SSNS

Ssn
1234568789

453453453

SMITH_PNOS

Pno
1

2

IT

70

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In general, the DIVISION operation is applied to two relations R(Z) + S(X), where the
attributes of R are a subset of the attributes of S; that is, X Z.Let Y be the set of attributes of
R that are not attributes of S; that is, Y = Z X (and hence Z = X Y). The result of DIVISION
is a relation T(Y) that includes a tuple t if tuples tR appear in R with tR [Y] =t, and with tR
[X] =tS for every tuple tS in S. This means that, for a tuple t to appear in the result T of t

Figure below illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}.

R 5
2L i
al b1 al
L ot 12
3 | B
ad 4}] =

| a1) b2) T
a3 k2
a2 3
a3 EA3
md k3
at [
aZ 7 |

| a3 | ba

The tuples (values) bl and b4 appear in R in combination with all three tuples in S; that is why
they appear in the resulting relation T. All other values of B in R do not appear with all the tuples
in S and are not selected: b2 does not appear with a2, and b3 does not appear with al.

The DIVISION operation can be expressed as a sequence of , x and — operations are as
follows:

Il =, R)
2 —x (5% T1)-R)
T—T1-T2

V.RASHMI (Assistant Professor) PVPSIT IT 71

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

QPERATION PURPOSE HOTATIHON

SELECT Sefects oll tuples that satisfy the selection conditon s ST———
from a relation K.

PROJECT Produces a new relation with ealy some of theatirib- x__ _ (F)
ules of K, and removes duplicate tuples. B

THETA JOaM Produces all combinations of mples trom &, and R, BoM e i R
that satisfr the join conditon.

EQUEOIN Produces all e commbina b of |11P'i‘." froi FI ana R b e R. OR
R, that satisfy a join condition with enly equality L .
COMPArisons. RPN

MATURAL JOIN Sami s ECURICIN excepd that the join attribmes of f6, R+ R,
are not included in the resulting relation: if the join O EI- e e bk
attributes have the same names, they do not have to R, X
b specified at all. oORR R,

LIMHOE Produces a relation that inciudes all the tuphes in 8, H. R
of B, or both B, and B; R, and B, mst be ankon))
cormpatibbe

INTERSECTION Produces a relation thal includes oll the tuples inboth B AR
R, and K B, and R, must be union compatible.

DIFFERENCE Produces a relation that inchudes all the tuples m A, R =R,
that are not in £, F, and K. must b2 unien compatibde.

CARTESIAN Moodduices a relpbionn Uil hos the attidnides of R, piwd B ox B

PRODUCT R, and Includes as tugles all possible combinations of -
tuples bromm ¥, and K.,

DMSION Produces a relation £1X) that inchades all mples | X B = RaY)

in & LL) that appear m B, in combinatoon with every
tuple foom B P whore £ = 2w 1

Table: Operations of Relational Algebra

3.5.5 Notation for Query Trees

Query tree (query evaluation tree or query execution tree) is used in relational systems to
represent queries internally. A query tree is a tree data structure that corresponds to a
relational algebra expression. It represents the input relations of the query as leaf nodes of the
tree, and represents the relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its
operands represented by its child nodes are available, and then replacing that internal node by
the relation that results from executing the operation. The execution terminates when the root
node is executed and produces the result relation for the query.

Example: For every project located in ‘Stafford’, list the Project number, the controlling
department number and the department manager’s last name, address and birth date.

R Prumbear, Dnum, Lname, Address, El:ia'iel:- l: {GP'I{-:.ahm:E[afmrd'I PROJECT))
P Drom=Dnumber DEPARTMENT)) B, o (EMPLOYEE))

V.RASHMI (Assistant Professor)

PVPSIT IT

72

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

" B Prumbe B Dnum E Lnames E_Aoorses E Bosle

(i 1]
=D bgr men=E Semn

2

= P Drume=0 Drusmier [& | emeLoveE |

(10
TP Ploc atson= “Staford (D} {DEP!RTHEHT |

PP «——II PROJECT |

Leaf nodes P, D, and E represent the three relations PROJECT, DEPARTMENT, and
EMPLOYEE. The relational algebra operations in the expression are represented by internal
tree nodes. The query tree signifies an explicit order of execution in the following sense. The
node marked (1) must begin execution before node (2) because some resulting tuples of
operation (1) must be available before we can begin to execute operation (2). Similarly, node
(2) must begin to execute and produce results before node (3) can start execution, and so on.

A query tree gives a good visual representation and understanding of the query in terms of
the relational operations it uses and is recommended as an additional means for expressing
queries in relational algebra.

3.7 Examples of Queries in Relational Algebra:
Query 1. Retrieve the name and address of all employees who work for the ‘Research’
department.

RESEARCH _DEFT - ap, . .. {DEPARTMENT)
RESEARCH EMPS « (RESEARCH DEPT 04 . - EMPLOYEE)
RESULT = Mpoure Lname. AderassIRESEARCH_EMPS)

As asinple in-line expression, this query becomss:
R Faarn, Lname Adchesy !“I}:m-.--. Pesid’ DEPARTMENT Drursber _E,"_JEMPLWEET

Query 2. For every project located in ‘Stafford’, list the project number, the controllong
department number, and the department manager’s last name, address and birth date.

STAFFORD PROJS = 0y PROJECT)
CONTR_DEPTS « (STAFFORD_PROIS b¢ - DEPARTMENT)

PROJ_DEPT MGRS + (CONTR_DEPTS ™y, o EMPLOYEE)
RESULT 4 Tigyumber. Do Luane. Addhees Beatel PRO)_DEPT_MGRS)

V.RASHMI (Assistant Professor) PVPSIT IT 73

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Query 3. Find the names of employees who work on all the projects controlled by
department number 5.

DEPT5_PROJS & P, gy Ryt Opugns| PROJECT)))
EMP_PROJ &= D 540 o) Rease, ol WORKS_ON))

RESULT EMP_SSNS « EMP_PROJ + DEPT5_PROJS
RESULT &%, _ - _(RESULT EMP SSNS * EMPLOYEE)

Query 4. Make a list of project numbers for projects that involve an employee whose
last name is ‘Smith’, either as a worker or as a manager as a department that controls
the project.
SMITHS (Esen) & = (s, (EMPLOYEE))
SMITH_WORKER_PROIS « ng, . (WORKS_ON *» SMITHS)
MGRS — ELrame, M#JEMH.'DYEE P San-My “,DEFﬂH'THEHT:'
SMITH_MANAGED_DEPTS! Dnuml & mey . 168, e i IMGRS)
SMITH_MGH_PROUS(Pno) & fip, ;| SMITH_MANAGED_DEPTS + PROJECT)
RESULT « (SMITH_WORKER_PROIS s SMITH_MGR_PROIS)
Query 5. List the names of all employees with two or more dependents.
T'1(Ssn, No_of_dependents)— £ T -0 nucundart namel DEPENDENT)
T2 = Oy ot depanontasal T1)
RESULT &, . Frame! 11 * EMPLOYEE)
Query 6. Retrieve the names of employees who have no dependents.
ALL EMPS — no_ (EMPLOYEE)
EMPS_WITH_DEPS(Ssn) — n.,_ (DEPENDENT)
EMPS_WITHOUT_DEPS « (ALL_EMPS — EMPS_WITH_DEPS)
RESULT 2. Frame! EMPS_WITHOUT_DEPS » EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.
MGRS(Ssn) «m, __ (DEPARTMENT)
EMPS_WITH DEPS(Ssn) — R, DEPENDE NT)
MGRS_WITH_DEPS « (MGRS EMPS_WITH_DEPS)
RESULT & r,__ . (MGRS_WITH DEPS * EMPLOYEE)

V.RASHMI (Assistant Professor) PVPSIT IT 74

